Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Water Environ Res ; 96(7): e11080, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970489

ABSTRACT

The presence of perfluoroalkyl substances (PFAS) in the environment poses a significant threat to ecological safety and environmental health. Widespread microplastics (MPs) have been recognized as vectors for emerging contaminants due to human activities. However, the adsorption behaviors of PFAS on MPs, especially on aged MPs, have not been extensively investigated. This study aimed to investigate the adsorption behaviors of perfluorooctanoic acid (PFOA) on aged MPs (polystyrene, polyethylene, and polyethylene terephthalate) treated with UV irradiation and persulfate oxidation under salinity and dissolve organic matter (DOM) condition. Carbonyl index values of MPs increased after the aged treatment, indicating the production of oxygen-containing groups. The PFOA adsorption on aged MPs was impacted by the co-existence of Na+ ions and DOM. As PFOA adsorption onto aged MPs was mainly controlled by hydrophobic interaction, the electrostatic interaction also made a contribution, but there was no significant change in PFOA adsorption behavior between the pristine and aged MPs. While these findings provide insight into PFAS adsorption on aged MPs, further research is necessary to account for the complexity of the real environment. PRACTITIONER POINTS: Adsorption behaviors of perfluorooctanoic acid (PFOA) on aged microplastics were investigated. Hydrophobic interaction mainly controlled PFOA adsorption on aged microplastics (MPs). Co-existence dissolve organic matter and salinity influenced PFOA adsorption behaviors on aged MPs.


Subject(s)
Caprylates , Fluorocarbons , Microplastics , Water Pollutants, Chemical , Fluorocarbons/chemistry , Caprylates/chemistry , Microplastics/chemistry , Adsorption , Water Pollutants, Chemical/chemistry
2.
Chemosphere ; 345: 140509, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871873

ABSTRACT

Biofilm-developed microplastics (MPs) may serve as important vectors for contaminants in aquatic environments. Elucidating the interactions between biofilm-developed MPs and coexisting contaminants is crucial for understanding the vector capacities of MPs. However, little is known about how the adverse effects of contaminants on MP surface-colonized biofilms influence their vector capacity. In this study, we aimed to investigate the interaction mechanism of biofilms colonizing the surface of MPs with coexisting contaminants using microcosm experiments and biofilm characterization techniques. The results indicated that the biofilm biomass on polystyrene increased over time, providing an additional abundance of oxygen-containing functional groups and promoting Cd accumulation by biofilm-developed polystyrene. Moreover, as a coexisting contaminant, Cd exerted adverse effects such as additional mortality of microorganisms and senescence and MP-colonized biofilm shedding. Consequently, the contaminant vector capacity of biofilm-developed MPs could be mitigated. Thus, the adverse effects of coexisting contaminants on biofilms influenced the ability of MPs to act as vectors in aquatic environments. Neglecting the negative effects of contaminants on biofilms may lead to an overestimation of the contaminant vector capacity of biofilm-developed MPs. This study provides support for more accurate assessment of the interactions between biofilm-developed MPs as vectors and contaminants in aquatic environments.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/toxicity , Plastics , Polystyrenes/toxicity , Cadmium , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Biofilms
3.
Sci Total Environ ; 845: 157216, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35839891

ABSTRACT

The transport and retention of microorganisms are typically described using attachment/detachment and straining/liberation models. However, the parameters in the models varied significantly, posing a significant challenge to describe microbial transport under different environmental conditions. A neural network (ANN) model was developed in this study to link the parameters in the model with the factors influencing microbial transport including the properties of microorganisms such as size and surface potentials, and the properties of porous media such as grain size and porosity, and flow conditions. Exhaustive search of literature renders 420 sets of experimental data of microbial transport, which were fitted using the microbial transport model to obtain model parameters. The model parameters, together with the factors influencing microbial transport, were then used to train an ANN model to search for their relationship. An ANN-based parameter relationship was derived and was then used to simulate microbial transport. The simulated results using the relationship roughly matched with the experimental data under different environmental conditions, indicating that a unified relationship was established between the parameters of the microbial transport model and the factors influencing microbial transport, and that microbial transport can be described using the microbial transport model with the ANN-based unified relationship for model parameters.


Subject(s)
Machine Learning , Particle Size , Porosity
4.
Nanomaterials (Basel) ; 11(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34685209

ABSTRACT

Leakage of metal oxide nanoparticles (MNPs) into marine environments is inevitable with the increasing use of MNPs. However, little is known about the effects of these lately emerged MNPs on the bioaccumulation and toxicity of pre-existing contaminants in marine biota. The current study therefore investigated the effects of two common MNPs, CuO nanoparticles (nCuO) and Fe3O4 nanoparticles (nFe3O4), on bioaccumulation and toxicity of arsenic (As) in green mussel Perna viridis. Newly introduced MNPs remarkably promoted the accumulation of As and disrupted the As distribution in mussels because of the strong adsorption of As onto MNPs. Moreover, MNPs enhanced the toxicity of As by disturbing osmoregulation in mussels, which could be supported by decreased activity of Na+-K+-ATPase and average weight loss of mussels after MNPs exposure. In addition, the enhanced toxicity of As in mussels might be due to that MNPs reduced the biotransformation efficiency of more toxic inorganic As to less toxic organic As, showing an inhibitory effect on As detoxifying process of mussels. This could be further demonstrated by the overproduction of reactive oxygen species (ROS), as implied by the rise in quantities of superoxide dismutase (SOD) and lipid peroxidation (LPO), and subsequently restraining the glutathione-S-transferases (GST) activity and glutathione (GSH) content in mussels. Taken together, this study elucidated that MNPs may elevate As bioaccumulation and limit As biotransformation in mussels, which would result in an enhanced ecotoxicity of As towards marine organisms.

5.
Water Res ; 181: 115923, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32422451

ABSTRACT

Natural organic matter (NOM) can influence the toxicity and speciation of chromium (Cr) in subsurface through redox reactions and complexation. Under anoxic conditions, NOM can be reduced by microorganisms or geochemical reductants, and the reduced NOM (NOMred) represents a large reservoir of organic matter observed in anoxic sediments and water. While the current body of work has established the kinetic of Cr(VI) reduction by oxidized NOM (NOMox) under oxic conditions, much less is known about the rates and mechanisms of Cr(VI) reduction triggered by NOMred under anoxic conditions and the colloidal properties of the reaction products. This study provided new information regarding the NOMred-mediated Cr(VI) reduction and colloidal stability of reduced Cr(III) particles over a wide range of environmentally relevant anoxic conditions. We show that under dark anoxic conditions reduced humic acid (HAred) moieties (e.g., quinone) can quickly reduce Cr(VI) to Cr(III), and the reduced Cr(III) can subsequently complex with carboxyl groups of HA leading to the formation of stable HA-Cr(III) colloids. Rates of Cr(VI) reduction by HAred are 3-4 orders of magnitude higher than those by oxidized HA (HAox) due primarily to the higher reducing capacity of HAred. The stable HA-Cr(III) colloids are formed across a range of HA concentrations (8-150 mg C/L) and pH conditions (6-10) with hydrodynamic diameter in the range of 210-240 nm. Aberration-corrected scanning transmission electron microscopy (Cs-STEM) and X-ray photoelectron spectroscopy (XPS) confirmed that the particles are composed of HA-Cr(III). The high colloidal stability of HA-Cr(III) particles could be attributed to the enhanced electrosteric stabilization effect from free and adsorbed HA, which decreased particle aggregation. However, the presence of divalent cations (Ca2+ and Mg2+) promoted particle aggregation at pH 6. These new findings are valuable for our fundamental understanding of the fate and transport of Cr in organic-rich anoxic environments, which also have substantial implications for the development and optimization of subsurface Cr sequestration technology.


Subject(s)
Chromium , Humic Substances , Colloids , Oxidation-Reduction
6.
Chemosphere ; 239: 124773, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31518919

ABSTRACT

Hyporheic zone (HZ) sediments in river systems are often contaminated with heavy metals as a legacy of natural processes and anthropogenic activities. The geochemical behaviors of heavy metals in the HZ sediments at the laboratory scale have been extensively studied. However, the watershed-scale distributions of heavy metals in the HZ sediments and the processes controlling their distributions have not been well studied. Here, we report a watershed-scale study of heavy metals (i.e., Cr, Ni, Cu, Zn, Cd, and Pb) distributions in the HZ of the Maozhou River watershed, a heavily polluted area within the Pearl River Delta, southern China. Statistical analysis revealed that the spatial distribution of studied heavy metal concentrations was highly correlated with that of the sediment-associated sulfide at the watershed-scale. Metal extraction analysis and double-spherical aberration-corrected scanning transmission electron microscope imaging (Cs-STEM) further confirmed the strong association of heavy metals with sulfur. These observations demonstrated that the formation of metals-sulfide precipitates was the key process controlling the watershed-scale distributions of heavy metals (especially for Cr, Ni and Zn) in the HZ sediments. Additionally, high permeability of the HZ sediments may prevent Ni, Zn, Cd and Pb accumulation in sediments. Specially, Cu distribution was mainly affected by organic-Cu complexation. In the estuary area, salinity input likely affected the distributions of Ni, Zn and Cd through cation exchange processes. The findings improved our understanding of the distributions of heavy metals and the processes controlling their distributions at the watershed-scale, and have implications for remediating and managing contaminated HZ sediments.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring/methods , Estuaries , Geologic Sediments/chemistry , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Microscopy, Electron, Scanning Transmission , Rivers , Salinity , Sulfides/analysis , Sulfides/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
7.
Chemosphere ; 233: 57-66, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31163309

ABSTRACT

Bacterium Shewanella oneidensis strain (MR1), a facultative microorganism that plays critical role in contaminant transformation and degradation, was used as an example to decipher the transport and retention of microorganisms in water-saturated porous media with different grain-surface properties and under different ionic compositions (i.e. Na+, Ca2+, and Mg2+). Dolomite and quartz sands, which contained different surface charge properties, were used as the representative minerals. Dolomite was selected because its surface charges are significantly affected by solution composition. The mobility of MR1 in the dolomite column was lower than that in the quartz column, because the lower energy barrier between MR1 and dolomite than that between MR1 and quartz, resulting in the larger retention of MR1 in the dolomite column. The breakthrough curves were well simulated by the two sites kinetic model with HYDRUS-1D. The maximum concentration of attached bacteria (Smax) were positively correlated to the ionic strength regardless of mineral types. The values of Smax were about 1.1-4.0 times larger in the MR1-dolomite system than that in the MR1-quartz system under different ionic strength conditions. The retention of the MR1 on dolomite surfaces in the presence of divalent cations Ca2+ is significantly higher than that on quartz surfaces primarily due to the larger electrostatic attraction energy between the MR1 and dolomite grains. The findings demonstrate that the porous media with the lower negative charge has the higher capacity for the retention and deposition of MR1, potentially affecting the transport of MR1 and other bacteria in the subsurface.


Subject(s)
Shewanella/physiology , Calcium Carbonate , Kinetics , Magnesium , Osmolar Concentration , Porosity , Quartz , Silicon Dioxide , Surface Properties , Water
8.
Sci Total Environ ; 647: 1137-1147, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180322

ABSTRACT

In lotic ecosystems highly susceptible to anthropogenic activities, the influences of environmental variables on microbial communities and their functions remain poorly understood, despite our rapidly increasing sequencing ability. In this study, we profiled the microbial communities in the hyporheic sediments of a watershed undergoing intensive anthropogenic activities via next-generation sequencing of 16S rRNA V4-V5 hypervariable regions on Illumina MiSeq platform. Tidal impacts on microbial communities were investigated via co-occurrence networks. In addition, the influences of physicochemical variables including salinity, and the concentrations of nutrients, organic matter and heavy metals on the microbial communities were explored via canonical correspondence analyses. The sediment samples were collected from 19 sites covering the whole main river stem of the target watershed (n = 19; Maozhou river watershed, Shenzhen, China). The samples were sub-divided in the field for microbiological analyses and measurements of physicochemical variables. The results indicated that core microbiome was associated with archaea methanogens and bacteria members from Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Synergistetes and Firmicutes, among which, gram-negative and anaerobic bacteria genera contributing to the cycling of carbon, nitrogen and sulfur were predominant. Site-specific microbiomes were revealed that may serve as indicators of local environmental conditions (e.g., members affiliated to Oceanospirillales were abundant at sites with salt intrusion). Distinct microbial co-occurrence networks were identified for non-tidal, inter-tidal and tidal sites. Major environmental factors influencing microbial community composition included the concentrations of nitrate and bicarbonate in river water, pore water concentrations of sulfate, dissolved organic carbon and electrical conductivity, as well as manganese concentrations associated with the solid sediment. Collectively, the results of this study provide fundamental insights into the influence of environmental perturbations on microbial community composition in a lotic system, which may aid in the design of effective remediation and/or restoration strategies in the target watershed and beyond.


Subject(s)
Environmental Microbiology , Environmental Monitoring , Archaea , China , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Water Microbiology
9.
J Contam Hydrol ; 210: 1-14, 2018 03.
Article in English | MEDLINE | ID: mdl-29471976

ABSTRACT

Wastewater reclamation now represents an effective measure for sustainable water resource management in arid regions, however wastewater components (organic micropollutants) may potentially impact local ecological and/or human health. Previous studies have shown that sodium bentonite/natural clay (BC) mixes may be used to effectively reduce riverbed infiltration in regions characterized by excessively high hydraulic conductivity. Accordingly, the current study sought to investigate the contaminant removal efficiency (Re) of several BC mass ratios in simulated dry riverbeds. Results indicate that the measured Re of NH4+-N, CODcr and BOD5 increased in concurrence with an increasing sodium bentonite ratio, up to a maximum Re of 97.4% (NH4+-N), 55.2% (CODcr), and 51.5% (BOD5). The primary contaminant removal site was shown to be the infiltration-reducing (BC) layer, accounting for approximately 40%, 60%, and 70% of NH4+-N, CODcr and BOD5 removal, respectively. Conversely, the removal efficiency of NO3-N was found to be low (<15%), while total phosphorous (TP) was found to actively leach from the infiltration-reduction layer, resulting in measured TP discharges 2.4-4.8 times those of initial infiltration values. The current study provides a technical baseline for the efficacy of sodium bentonite as an effective bi-functional material in areas utilizing reclaimed water i.e. concurrent reduction of infiltration rates (Function 1) and decontamination of reclaimed wastewater infiltration/recharge (Function 2). Findings indicate that sodium bentonite-clay mixes may represent a feasible alternative for managing recharge of non-potable aquifers with reclaimed wastewater.


Subject(s)
Bentonite/chemistry , Clay/chemistry , Groundwater/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Filtration , Geologic Sediments/chemistry , Humans , Models, Theoretical , Permeability , Rivers/chemistry
10.
Water Environ Res ; 89(3): 274-280, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28236821

ABSTRACT

Adsorptions of Dimethyl Phthalate (DMP) on three sediments in both reclaimed and ultrapure water were studied using the batch technique and the effects of reclaimed water on it were clarified. The data were interpreted by using Freundlich and Dubinin-Radushkviech models. The values of 1/n were among 0.207 to 0.766, showing the presence of multiple adsorption sites on sediments. Compared with the ultrapure water as the background solution, the adsorption capacities of sediments for DMP were reduced in case of reclaimed water due to the competition of substances in reclaimed water. The mean adsorption energy, E, is smaller in the reclaimed water than that in ultrapure water.


Subject(s)
Geologic Sediments/chemistry , Phthalic Acids/chemistry , Water Pollutants, Chemical/chemistry , Water Quality , Adsorption , Recycling , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...