Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 245: 117330, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31962130

ABSTRACT

AIMS: The purpose of this study was to investigate mechanisms of chronic alcohol-induced cardiac remodeling and dysfunction. We also sought to determine the role of cardiac fibroblasts, which play a dynamic role in cardiac remodeling, in mediating these effects. MAIN METHODS: Adult male Wistar rats were exposed to ethanol (EtOH) vapor inhalation for 16 weeks. Echocardiography was performed to assess terminal cardiac structure and function. Cardiac fibroblasts were isolated from the left ventricle (LV) for both ex vivo and in vitro analysis. Cultured H9C2 cells were also exposed to conditioned media from alcohol-exposed cardiac fibroblasts. Gene expression in whole LV tissue, isolated cardiac fibroblasts, or cultured H9C2 cells was determined by real-time PCR, and protein expression was determined by Western blot. KEY FINDINGS: EtOH led to LV wall thinning and impaired systolic function, and decreased contractile protein mRNA levels. EtOH increased LV inflammatory markers, JNK and Akt activation, and decreased mTOR expression. EtOH induced myofibroblast activation as assessed by flow cytometry, and increased LV collagen III expression. EtOH increased expression of several inflammatory mediators in cardiac fibroblasts both ex vivo and in vitro. Administration of conditioned media from EtOH-treated fibroblasts decreased contractile protein mRNA levels and impaired Akt and mTOR signaling in differentiated H9C2 cardiomyocytes. SIGNIFICANCE: Our results indicate that EtOH-induced cardiac atrophy and dysfunction is associated with activation of inflammatory pathways. Furthermore, EtOH may induce a pro-inflammatory cardiac fibroblast phenotype, leading to aberrant fibroblast-myocyte cross-talk. Thus, EtOH may promote cardiac muscle wasting in part by activation of pro-inflammatory fibroblasts.


Subject(s)
Ethanol/adverse effects , Heart/drug effects , Myocardium/pathology , Animals , Atrophy , Blotting, Western , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Echocardiography , Fibroblasts/drug effects , Fibroblasts/pathology , Heart/physiopathology , Inflammation/chemically induced , Inflammation/pathology , Male , Myocardium/cytology , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Ventricular Remodeling/drug effects
2.
Am J Physiol Heart Circ Physiol ; 312(1): H98-H105, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27769996

ABSTRACT

We have previously demonstrated the cardioprotective effects of ovarian hormones against adverse ventricular remodeling imposed by chronic volume overload. Here, we assess the estrogen receptor dependence of this cardioprotection. Four groups of female rats were studied: sham-operated (Sham), volume overloaded [aortocaval fistula (ACF)], Sham treated with estrogen receptor antagonist ICI 182,780 (Sham + ICI), and ACF treated with ICI. Cardiac function was assessed temporally using echocardiogram, and tissue samples were collected at 5 days and 6 wk postsurgery. All rats with volume overload had significantly increased cardiac output (96 ± 32 ml/min for ACF and 108 ± 11 ml/min for ACF + ICI vs. 31 ± 2 for Sham, P < 0.05). At 6 wk, volume overload induced significant left ventricular (LV) hypertrophy in both untreated and treated ACF groups. Both ACF groups developed significantly increased LV end-diastolic diameter (LVEDD), indicating LV dilatation, with the ACF + ICI group having the greatest increase (340%, relative to Sham). Ejection fraction was significantly reduced in the ACF + ICI group (23% reduction) at 6 wk postsurgery compared with untreated ACF (P < 0.05). Interstitial collagen staining was significantly reduced by volume overload, with estrogen receptor antagonism causing greater collagen loss at both 5 days and 6 wk postsurgery. Furthermore, volume overload induced a significant increase in LV wall stress only in rats treated with estrogen antagonist. These data indicate that estrogen receptor signaling is essential for sex hormone-dependent cardioprotection against adverse remodeling. The maintenance of myocardial extracellular matrix collagen appears to play a key role in this cardioprotection. NEW & NOTEWORTHY: We assessed the estrogen receptor (ER) dependence of female-specific cardioprotection using a rat model of chronic volume-overload stress. ER antagonism worsened ventricular wall stress, ventricular dilation, and cardiac dysfunction induced by volume overload. Further, blocking ERs resulted in cardiac remodeling and functional changes similar to that previously found in ovariectomized rats.


Subject(s)
Estradiol/analogs & derivatives , Estrogen Receptor Antagonists/pharmacology , Heart/drug effects , Hypertrophy, Left Ventricular/physiopathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Aorta/surgery , Arteriovenous Shunt, Surgical , Collagen/metabolism , Estradiol/pharmacology , Female , Fulvestrant , Myocardium/metabolism , Rats , Rats, Sprague-Dawley , Stroke Volume , Vena Cava, Inferior/surgery , Ventricular Pressure/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...