Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Colloids Surf B Biointerfaces ; 236: 113789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367291

ABSTRACT

The effects of a range of electrolytes on the hydrolysis of urea by the enzyme urease is explored. The autocatalytic behavior of urease in unbuffered solutions and its pH clock reactions are studied. The concentration dependence of the experimental variables is analyzed in terms of specific ion-enzyme interactions and hydration. The results offer insights into the molecular mechanisms of the enzyme, and on the nature of its interactions with the electrolytes. We found that urease can tolerate mild electrolytes in its environment, while it is strongly inhibited by both strong kosmotropic and strong chaotropic anions. This study may cast light on an alternative therapy for Helicobacter pylori infections and contribute to the design of innovative materials and provide new approaches for the modulation of the enzymatic activity.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Urease , Anions/chemistry , Electrolytes , Hydrogen-Ion Concentration
2.
Polymers (Basel) ; 15(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37177360

ABSTRACT

The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended "brush" type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate.

3.
Heliyon ; 9(2): e13516, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36825195

ABSTRACT

The precipitation of five amino acids: DL-alanine, L-arginine, L-leucine, DL-methionine and L-tyrosine was studied at their solubility limits and isoelectric point by using a bubble column evaporator (BCE). The precipitation of amino acids via a bubble column evaporator and a standard stirring method were compared via turbidity measurements. Particle size, zeta potential and polydispersity index (PDI) were also measured using a Malvern Zeta-sizer and the particle morphology was examined using Scanning Electron Microscopy (SEM). The novel BCE process emerges as a much more effective method than precipitation by standard stirring methods. Better control of fine particle size and growth rates is achieved. The amino acids in zwitterionic form exhibit the same unexplained bubble coalescence inhibition phenomenon as do common salts. This suggests obvious applications in flotation technologies.

4.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500616

ABSTRACT

Unlike halides, where the kosmotropicity decreases from fluoride to iodide, the kosmotropic nature of halates apparently increases from chlorate to iodate, in spite of the lowering in the static ionic polarizability. In this paper, we present an experimental study that confirms the results of previous simulations. The lyotropic nature of aqueous solutions of sodium halates, i.e., NaClO3, NaBrO3, and NaIO3, is investigated through density, conductivity, viscosity, and refractive index measurements as a function of temperature and salt concentration. From the experimental data, we evaluate the activity coefficients and the salt polarizability and assess the anions' nature in terms of kosmotropicity/chaotropicity. The results clearly indicate that iodate behaves as a kosmotrope, while chlorate is a chaotrope, and bromate shows an intermediate nature. This experimental study confirms that, in the case of halates XO3-, the kosmotropic-chaotropic ranking reverses with respect to halides. We also discuss and revisit the role of the anion's polarizability in the interpretation of Hofmeister phenomena.


Subject(s)
Chlorates , Water , Anions , Sodium Chloride , Temperature , Iodates
5.
Polymers (Basel) ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458261

ABSTRACT

When a membrane of Nafion swells in water, polymer fibers "unwind" into the adjoining liquid. They extend to a maximum of about ~300 µm. We explore features of Nafion nanostructure in several electrolyte solutions that occur when the swelling is constrained to a cell of size less than a distance of 300 µm. The constraint forces the polymer fibers to abut against the cell windows. The strongly amphiphilic character of the polymer leads to a shear stress field and the expulsion of water from the complex swollen fiber mixture. An air cavity is formed. It is known that Nafion membrane swelling is highly sensitive to small changes in ion concentration and exposure to shaking. Here we probe such changes further by studying the dynamics of the collapse of the induced cavity. Deionized water and aqueous salt solutions were investigated with Fourier IR spectrometry. The characteristic times of collapse differ for water and for the salt solutions. The dynamics of the cavity collapse differs for solutions prepared by via different dilution protocols. These results are surprising. They may have implications for the standardization of pharmaceutical preparation processes.

6.
J Colloid Interface Sci ; 617: 399-408, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35279575

ABSTRACT

HYPOTHESIS: In Part 1 of this work we reported the behavior of a moderately concentrated dispersion of sodium oleate (NaOL) in water that produces elongated wormlike micelles (WLMs). Prompted by the striking effect induced by adding potassium chloride to the original NaOL dispersion, here we investigate the effect of different anions (with fixed cation) on NaOL or KOL-based hydrogels upon addition of different strong electrolytes. The interest in these investigations relies on the fact that they are among the best candidates for the production of eco-friendly stimulus-responsive materials. EXPERIMENTAL: The thermal and rheological properties of a 0.43 M dispersion of NaOL or KOL in water were investigated by steady-state and oscillatory rheology, and DSC experiments in the presence of different potassium or sodium salts at the same concentration (0.54 m), respectively. FINDINGS: This paper highlights the occurrence of a Hofmeister phenomenon in the case of oleate-based WLMs and illustrates the remarkable effect induced by kosmotropic and chaotropic anions in terms of rheology and hydration of the rod-like nanoassemblies, that reflect the different ion adsorption at the WLM interface. We also discuss the different ion condensation of sodium and potassium ions at the interface that can lead to a significant change in the curvature of the elongated rods.


Subject(s)
Micelles , Oleic Acid , Anions/chemistry , Oleic Acid/chemistry , Potassium , Sodium , Water
7.
QRB Discov ; 3: e6, 2022.
Article in English | MEDLINE | ID: mdl-37564950

ABSTRACT

Chapter 1: COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2: For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.

8.
Front Cell Dev Biol ; 9: 675140, 2021.
Article in English | MEDLINE | ID: mdl-34195192

ABSTRACT

This study aims to explore the variety of previously unknown morphologies that brain lipids form in aqueous solutions. We study how these structures are dependent on cholesterol content, salt solution composition, and temperature. For this purpose, dispersions of porcine sphingomyelin with varying amounts of cholesterol as well as dispersions of porcine brain lipid extracts were investigated. We used cryo-TEM to investigate the dispersions at high-salt solution content together with small-angle (SAXD) and wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) for dispersions in the corresponding salt solution at high lipid content. Sphingomyelin forms multilamellar vesicles in large excess of aqueous salt solution. These vesicles appear as double rippled bilayers in the images and as split Bragg peaks in SAXD together with a very distinct lamellar phase pattern. These features disappear with increasing temperature, and addition of cholesterol as the WAXD data shows that the peak corresponding to the chain crystallinity disappears. The dispersions of sphingomyelin at high cholesterol content form large vesicular type of structures with smooth bilayers. The repeat distance of the lamellar phase depends on temperature, salt solution composition, and slightly with cholesterol content. The brain lipid extracts form large multilamellar vesicles often attached to assemblies of higher electron density. We think that this is probably an example of supra self-assembly with a multiple-layered vesicle surrounding an interior cubic microphase. This is challenging to resolve. DSC shows the presence of different kinds of water bound to the lipid aggregates as a function of the lipid content. Comparison with the effect of lithium, sodium, and calcium salts on the structural parameters of the sphingomyelin and the morphologies of brain lipid extract morphologies demonstrate that lithium has remarkable effects also at low content.

9.
J Colloid Interface Sci ; 590: 238-248, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33548607

ABSTRACT

HYPOTHESIS: The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride. EXPERIMENTAL: The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w). FINDINGS: This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.

10.
Polymers (Basel) ; 12(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276553

ABSTRACT

When Nafion swells in water, colloidal particles are repelled from the polymer surface; this effect is called the formation exclusion zone (EZ), and the EZ size amounts to several hundred microns. However, still no one has investigated the EZ formation in a cell whose dimension is close to the EZ size. It was also shown that, upon swelling in water, Nafion fibers "unwind" into the water bulk. In the case of a cell of limited volume, unwound fibers abut against the cell windows, and water is completely pushed out from the region between the polymer and the cell window, resulting in a cavity appearance. The temporal dynamics of the collapse of this cavity was studied depending on the cell size. It is shown that the cavity formation occurs due to long-range forces between polymer strands. It turned out that this scenario depends on the isotopic composition of the water, ionic additives and water pretreatment. The role of nanobubbles in the formation and collapse of the cavity were analyzed. The results obtained allowed us to conclude that the EZ formation is precisely due to the unwinding of polymer fibers into the liquid bulk.

11.
J Phys Chem B ; 124(36): 7872-7878, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32790394

ABSTRACT

Theories of liquids and their simulation ignore any physical effects of dissolved atmospheric gas. Solubilities appear far too low to matter. Long-standing observations to the contrary, like cavitation, the salt dependence of bubble-bubble interactions, and the stability of degassed emulsions, continue to call that assumption into question, and these questions multiply. We herein explore more unexpected effects of dissolved gas that are inexplicable by classical theory. Electrical conductivities of different salts in water were measured as a function of concentration before and after degassing the liquid. The liquid/liquid phase separation of binary mixtures containing water, n-hexane, or perfluorooctane was significantly retarded after degassing. We anticipate that preliminary attempts at explaining these effect probably lie in self-organization of dissolved gas, like nanobubbles and cooperativity in gas molecular interactions. These are salt- and liquid-dependent.

12.
Lancet Rheumatol ; 2(8): e458-e459, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32835253
13.
ACS Omega ; 5(24): 14689-14701, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596606

ABSTRACT

Structural characterization by three complementary methods of laser diagnostics (dynamic light scattering, laser phase microscopy, and laser polarimetric scatterometry) has established that shaking of immunoglobulin G (IgG) dispersions in water and ethanol-water mixtures (36.7 vol %) results in two effects. First, it intensifies the aggregation of IgG macromolecules. Second, it generates bubbles with a size range that is different in each solvent. The aggregation is enhanced in ethanol-water mixtures because of IgG denaturation. IgG aggregates have a size of ∼300 nm in water and ∼900 nm in ethanol-water mixtures. The flotation of IgG is much more efficient in water. This can be explained by a better adsorption of IgG particles (molecules and aggregates) on bubbles in water as compared to ethanol-water mixtures. Bulk nanobubbles and their association with IgG aggregates were visualized by laser phase microscopy in water but were not detected in ethanol-water mixtures. Therefore, the nanobubble flotation mechanism for IgG aggregates acting in water is not feasible for ethanol-water mixtures.

14.
15.
Q Rev Biophys ; 52: e13, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31771669

ABSTRACT

Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the 'endothelial surface layer' or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a 'lung' in miniature. This interpretation may have far-reaching consequences for physiology.


Subject(s)
Endothelium, Vascular/metabolism , Animals , Glycocalyx/metabolism , Humans , Models, Molecular , Surface Properties
16.
J Chem Phys ; 148(12): 124901, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29604815

ABSTRACT

Experiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8-2.15 µm. The experiments were carried out using two protocols: in the first protocol we studied the dynamics of Nafion swelling in H2O + D2O mixtures for the deuterium concentrations 3 < C < 104 ppm, and in the second protocol we studied the dynamics of swelling in pure heavy water (C = 106 ppm). For liquid mixtures in the concentration range 3 < C < 104 ppm, the transmittance spectra are the same, but for Nafion soaked in these fluids, the corresponding spectra are different. It is shown that, in the range of deuterium contents C = 90-500 ppm, the behavior of transmittance of the polymer membrane is non-monotonic. In experiments using the second protocol, the dynamics of diffusion replacement of residual water, which is always present in the bulk of the polymer membrane inside closed cavities (i.e., without access to atmospheric air), were studied. The experimentally estimated diffusion coefficient for this process is ≈6·10-11 cm2/s.

17.
Colloids Surf B Biointerfaces ; 159: 394-404, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28822288

ABSTRACT

Part 1 revisited developments in lipid and surfactant self assembly over the past 40 years [1]. New concepts emerged. Here we explore how these developments can be used to make sense of and bring order to a range of complex biological phenomena. Together with Part 1, this contribution is a fundamental revision of intuition at the boundaries of Colloid Science and Biological interfaces from a perspective of nearly 50 years. We offer new insights on a unified treatment of self assembly of lipids, surfactants and proteins in the light of developments presented in Part 1. These were in the enabling disciplines in molecular forces, hydration, oil and electrolyte specificity; and in the role of non Euclidean geometries-across the whole gammut of physical, colloid and surface chemistry, biophysics and membrane biology and medicine. It is where the early founders of the cell theory of biology and the physiologists expected advances to occur as D'Arcy Thompson predicted us 100 years ago.


Subject(s)
Colloids/chemistry , Lipids/chemistry , Surface-Active Agents/chemistry
18.
Carbohydr Polym ; 173: 344-352, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28732875

ABSTRACT

The specific effects induced by some strong electrolytes or neutral co-solutes on aqueous mixtures of guar gum (GG), sodium alginate (SA) and sodium hyaluronate (SH) were studied through rheology and DSC experiments. The results are discussed in terms of changes in the polymer conformation, structure of the network and hydration properties. This study is also aimed at controlling the viscosity of the aqueous mixtures for application in green formulations to be used as fracturing fluids for shale gas extraction plants.

19.
Colloids Surf B Biointerfaces ; 152: 326-338, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28131093

ABSTRACT

Hofmeister, specific ion effects, hydration and van der Waals forces at and between interfaces are factors that determine curvature and microstructure in self assembled aggregates of surfactants and lipids; and in microemulsions. Lipid and surfactant head group interactions and between aggregates vary enormously and are highly specific. They act on the hydrophilic side of a bilayer, micelle or other self assembled aggregate. It is only over the last three decades that the origin of Hofmeister effects has become generally understood. Knowledge of their systematics now provides much flexibility in designing nanostructured fluids. The other side of the coin involves equally specific forces. These (opposing) forces work on the hydrophobic side of amphiphilic interfaces. They are due to the interaction of hydrocarbons and other "oils" with hydrophobic tails of surfactants and lipids. The specificity of oleophilic solutes in microemulsions and lipid membranes provides a counterpoint to Hofmeister effects and hydration. Together with global packing constraints these effects determine microstructure. Another factor that has hardly been recognised is the role of dissolved gas. This introduces further, qualitative changes in forces that prescribe microstructure. The systematics of these effects and their interplay are elucidated. Awareness of these competing factors facilitates formulation of self assembled nanostructured fluids. New and predictable geometries that emerge naturally provide insights into a variety of biological phenomena like anaesthetic and pheromone action and transmission of the nervous impulse (see Part 2).


Subject(s)
Lipids/chemistry , Surface-Active Agents/chemistry , Emulsions/chemistry , Membranes, Artificial
20.
Langmuir ; 32(43): 11245-11255, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27350310

ABSTRACT

Ion-stabilized nanobubbles in bulk aqueous solutions of various electrolytes were investigated. To understand the ion-specific mechanism of nanobubble stabilization, an approach based on the Poisson--Boltzmann equation at the nanobubble interface and in the near-surface layer was developed. It has been shown that the stabilization of nanobubbles is realized by the adsorption of chaotropic anions at the interface, whereas the influence of cosmotropic cations is weak. With increasing temperature, it should be accounted for by blurring the interface due to thermal fluctuations. As a result, the adsorbed state of ions becomes unstable: the nanobubble loses its stability and vanishes. This prediction was proven in our experiments. It turned out that in the case of liquid samples being kept in hermetically sealed ampules, where the phase equilibrium at the liquid-gas interface is fulfilled for any temperature, the volume number density of nanobubbles decreases with increasing temperature and this decrease is irreversible.

SELECTION OF CITATIONS
SEARCH DETAIL
...