Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34298817

ABSTRACT

Replicative repair of interstrand crosslinks (ICL) generated by platinum chemotherapeutics is orchestrated by the Fanconi anemia (FA) repair pathway to ensure resolution of stalled replication forks and the maintenance of genomic integrity. Here, we identify novel regulation of FA repair by the cancer-associated glycolytic enzyme PFKFB3 that has functional consequences for replication-associated ICL repair and cancer cell survival. Inhibition of PFKFB3 displays a cancer-specific synergy with platinum compounds in blocking cell viability and restores sensitivity in treatment-resistant models. Notably, the synergies are associated with DNA-damage-induced chromatin association of PFKFB3 upon cancer transformation, which further increases upon platinum resistance. FA pathway activation triggers the PFKFB3 assembly into nuclear foci in an ATR- and FANCM-dependent manner. Blocking PFKFB3 activity disrupts the assembly of key FA repair factors and consequently prevents fork restart. This results in an incapacity to replicate cells to progress through S-phase, an accumulation of DNA damage in replicating cells, and fork collapse. We further validate PFKFB3-dependent regulation of FA repair in ex vivo cultures from cancer patients. Collectively, targeting PFKFB3 opens up therapeutic possibilities to improve the efficacy of ICL-inducing cancer treatments.

2.
Nat Commun ; 9(1): 3872, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250201

ABSTRACT

The glycolytic PFKFB3 enzyme is widely overexpressed in cancer cells and an emerging anti-cancer target. Here, we identify PFKFB3 as a critical factor in homologous recombination (HR) repair of DNA double-strand breaks. PFKFB3 rapidly relocates into ionizing radiation (IR)-induced nuclear foci in an MRN-ATM-γH2AX-MDC1-dependent manner and co-localizes with DNA damage and HR repair proteins. PFKFB3 relocalization is critical for recruitment of HR proteins, HR activity, and cell survival upon IR. We develop KAN0438757, a small molecule inhibitor that potently targets PFKFB3. Pharmacological PFKFB3 inhibition impairs recruitment of ribonucleotide reductase M2 and deoxynucleotide incorporation upon DNA repair, and reduces dNTP levels. Importantly, KAN0438757 induces radiosensitization in transformed cells while leaving non-transformed cells unaffected. In summary, we identify a key role for PFKFB3 enzymatic activity in HR repair and present KAN0438757, a selective PFKFB3 inhibitor that could potentially be used as a strategy for the treatment of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Hydroxybenzoates/pharmacology , Neoplasms/therapy , Phosphofructokinase-2/antagonists & inhibitors , Sulfones/pharmacology , Antineoplastic Agents/therapeutic use , Biphenyl Compounds/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Chemoradiotherapy/methods , DNA Breaks, Double-Stranded/radiation effects , Dideoxynucleotides/metabolism , Enzyme Inhibitors/therapeutic use , Humans , Hydroxybenzoates/therapeutic use , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , RNA, Small Interfering/metabolism , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Radiation, Ionizing , Recombinational DNA Repair/drug effects , Recombinational DNA Repair/radiation effects , Sulfones/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...