Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(9): 097002, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37721821

ABSTRACT

Hole spins in semiconductor quantum dots can be efficiently manipulated with radio-frequency electric fields owing to the strong spin-orbit interactions in the valence bands. Here we show that the motion of the dot in inhomogeneous strain fields gives rise to linear Rashba spin-orbit interactions (with spatially dependent spin-orbit lengths) and g-factor modulations that allow for fast Rabi oscillations. Such inhomogeneous strains build up spontaneously in the devices due to process and cool down stress. We discuss spin qubits in Ge/GeSi heterostructures as an illustration. We highlight that Rabi frequencies can be enhanced by 1 order of magnitude by shear strain gradients as small as 3×10^{-6} nm^{-1} within the dots. This underlines that spins in solids can be very sensitive to strains and opens the way for strain engineering in hole spin devices for quantum information and spintronics.

2.
Nat Nanotechnol ; 18(7): 741-746, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36879125

ABSTRACT

Spins in semiconductor quantum dots constitute a promising platform for scalable quantum information processing. Coupling them strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity, well beyond nearest-neighbour quantum interactions. Here we demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible metal-oxide-semiconductor fabrication process. By leveraging the strong spin-orbit interaction intrinsically present in the valence band of silicon, we achieve a spin-photon coupling rate as high as 330 MHz, largely exceeding the combined spin-photon decoherence rate. This result, together with the recently demonstrated long coherence of hole spins in silicon, opens a new realistic pathway to the development of circuit quantum electrodynamics with spins in semiconductor quantum dots.

3.
Nano Lett ; 22(19): 7867-7873, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36136339

ABSTRACT

Spin-orbit effects appearing in topological insulators (TI) and at Rashba interfaces are currently revolutionizing how we can manipulate spins and have led to several newly discovered effects, from spin-charge interconversion and spin-orbit torques to novel magnetoresistance phenomena. In particular, a puzzling magnetoresistance has been evidenced as bilinear in electric and magnetic fields. Here, we report the observation of bilinear magnetoresistance (BMR) in strained HgTe, a prototypical TI. We show that both the amplitude and sign of this BMR can be tuned by controlling with an electric gate the relative proportions of the opposite contributions of opposite surfaces. At magnetic fields of 1 T, the magnetoresistance is of the order of 1% and has a larger figure of merit than previously measured TIs. We propose a theoretical model giving a quantitative account of our experimental data. This phenomenon, unique to TI, offers novel opportunities to tune their electrical response for spintronics.

4.
Phys Rev Lett ; 120(13): 137702, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694195

ABSTRACT

In a semiconductor spin qubit with sizable spin-orbit coupling, coherent spin rotations can be driven by a resonant gate-voltage modulation. Recently, we have exploited this opportunity in the experimental demonstration of a hole spin qubit in a silicon device. Here we investigate the underlying physical mechanisms by measuring the full angular dependence of the Rabi frequency, as well as the gate-voltage dependence and anisotropy of the hole g factor. We show that a g-matrix formalism can simultaneously capture and discriminate the contributions of two mechanisms so far independently discussed in the literature: one associated with the modulation of the g factor, and measurable by Zeeman energy spectroscopy, the other not. Our approach has a general validity and can be applied to the analysis of other types of spin-orbit qubits.

5.
Nano Lett ; 18(4): 2282-2287, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29513545

ABSTRACT

We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. A total of three bottom gates are used to locally deplete the nanowire, creating a ballistic quantum point contact with only a few conducting channels. In a magnetic field, the Zeeman splitting of the corresponding 1D sub-bands is revealed by the emergence of conductance plateaus at multiples of e2/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear, leaving a first conductance step of 2 e2/ h, which is indicative of a remarkable 2-fold sub-band degeneracy that can persist up to several tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the sub-band structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.

6.
Phys Rev Lett ; 116(23): 236602, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341249

ABSTRACT

We show theoretically that the intrinsic (phonon-limited) carrier mobility in graphene nanoribbons is considerably influenced by the presence of spin-polarized edge states. When the coupling between opposite edges switches from antiferromagnetic to ferromagnetic with increasing carrier density, the current becomes spin polarized and the mean free path rises from 10 nm to micrometers. In the ferromagnetic state, the current flows through one majority-spin channel which is ballistic over micrometers and several minority-spin channels with mean free paths as low as 1 nm. These features predicted in technology-relevant conditions could be nicely exploited in spintronic devices.

7.
J Phys Condens Matter ; 28(10): 103001, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26871255

ABSTRACT

Recent progresses in quantum dots technology allow fundamental studies of single donors in various semiconductor nanostructures. For the prospect of applications figures of merits such as scalability, tunability, and operation at relatively large temperature are of prime importance. Beyond the case of actual dopant atoms in a host crystal, similar arguments hold for small enough quantum dots which behave as artificial atoms, for instance for single spin control and manipulation. In this context, this experimental review focuses on the silicon-on-insulator devices produced within microelectronics facilities with only very minor modifications to the current industrial CMOS process and tools. This is required for scalability and enabled by shallow trench or mesa isolation. It also paves the way for real integration with conventional circuits, as illustrated by a nanoscale device coupled to a CMOS circuit producing a radio-frequency drive on-chip. At the device level we emphasize the central role of electrostatics in etched silicon nanowire transistors, which allows to understand the characteristics in the full range from zero to room temperature.

8.
Nano Lett ; 15(5): 2958-64, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25923197

ABSTRACT

We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.

9.
Nano Lett ; 14(4): 2094-8, 2014.
Article in English | MEDLINE | ID: mdl-24611581

ABSTRACT

We investigate the gate-induced onset of few-electron regime through the undoped channel of a silicon nanowire field-effect transistor. By combining low-temperature transport measurements and self-consistent calculations, we reveal the formation of one-dimensional conduction modes localized at the two upper edges of the channel. Charge traps in the gate dielectric cause electron localization along these edge modes, creating elongated quantum dots with characteristic lengths of ∼10 nm. We observe single-electron tunneling across two such dots in parallel, specifically one in each channel edge. We identify the filling of these quantum dots with the first few electrons, measuring addition energies of a few tens of millielectron volts and level spacings of the order of 1 meV, which we ascribe to the valley orbit splitting. The total removal of valley degeneracy leaves only a 2-fold spin degeneracy, making edge quantum dots potentially promising candidates for silicon spin qubits.

10.
Phys Rev Lett ; 112(7): 076801, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579622

ABSTRACT

We report on magnetotransport measurements in InAs nanowires under a large magnetic field (up to 55 T), providing a spectroscopy of the one-dimensional electronic band structure. Large modulations of the conductance mediated by a control of the Fermi energy reveal the Landau fragmentation, carrying the fingerprints of the confined InAs material. Our numerical simulations of the magnetic band structure consistently support the experimental results and reveal key parameters of the electronic confinement.

11.
ACS Nano ; 6(9): 7942-7, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22876866

ABSTRACT

We report fully quantum simulations of realistic models of boron-doped graphene-based field-effect transistors, including atomistic details based on DFT calculations. We show that the self-consistent solution of the three-dimensional (3D) Poisson and Schrödinger equations with a representation in terms of a tight-binding Hamiltonian manages to accurately reproduce the DFT results for an isolated boron-doped graphene nanoribbon. Using a 3D Poisson/Schrödinger solver within the non-equilibrium Green's function (NEGF) formalism, self-consistent calculations of the gate-screened scattering potentials induced by the boron impurities have been performed, allowing the theoretical exploration of the tunability of transistor characteristics. The boron-doped graphene transistors are found to approach unipolar behavior as the boron concentration is increased and, by tuning the density of chemical dopants, the electron-hole transport asymmetry can be finely adjusted. Correspondingly, the onset of a mobility gap in the device is observed. Although the computed asymmetries are not sufficient to warrant proper device operation, our results represent an initial step in the direction of improved transfer characteristics and, in particular, the developed simulation strategy is a powerful new tool for modeling doped graphene nanostructures.


Subject(s)
Boron/chemistry , Graphite/chemistry , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Transistors, Electronic , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Particle Size
12.
Nano Lett ; 12(7): 3545-50, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22694664

ABSTRACT

We investigate electron and hole mobilities in strained silicon nanowires (Si NWs) within an atomistic tight-binding framework. We show that the carrier mobilities in Si NWs are very responsive to strain and can be enhanced or reduced by a factor >2 (up to 5×) for moderate strains in the ± 2% range. The effects of strain on the transport properties are, however, very dependent on the orientation of the nanowires. Stretched 100 Si NWs are found to be the best compromise for the transport of both electrons and holes in ≈10 nm diameter Si NWs. Our results demonstrate that strain engineering can be used as a very efficient booster for NW technologies and that due care must be given to process-induced strains in NW devices to achieve reproducible performances.

13.
Phys Rev Lett ; 106(4): 046803, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405346

ABSTRACT

Quantum transport properties of disordered graphene with structural defects (Stone-Wales and divacancies) are investigated using a realistic π-π* tight-binding model elaborated from ab initio calculations. Mean free paths and semiclassical conductivities are then computed as a function of the nature and density of defects (using an order-N real-space Kubo-Greenwood method). By increasing the defect density, the decay of the semiclassical conductivities is predicted to saturate to a minimum value of 4e2/πh over a large range (plateau) of carrier density (>0.5×10(14) cm(-20). Additionally, strong contributions of quantum interferences suggest that the Anderson localization regime could be experimentally measurable for a defect density as low as 1%.


Subject(s)
Elasticity , Electric Conductivity , Graphite/chemistry , Diffusion , Electrons , Models, Molecular , Molecular Conformation
14.
Phys Rev Lett ; 101(3): 036808, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18764279

ABSTRACT

We report on a numerical study of electronic transport in chemically doped 2D graphene materials. By using ab initio calculations, a self-consistent scattering potential is derived for boron and nitrogen substitutions, and a fully quantum-mechanical Kubo-Greenwood approach is used to evaluate the resulting charge mobilities and conductivities of systems with impurity concentration ranging within [0.5, 4.0]%. Even for a doping concentration as large as 4.0%, the conduction is marginally affected by quantum interference effects, preserving therefore remarkable transport properties, even down to the zero temperature limit. As a result of the chemical doping, electron-hole mobilities and conductivities are shown to become asymmetric with respect to the Dirac point.

15.
Phys Rev Lett ; 100(3): 036803, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18233020

ABSTRACT

We report on a numerical study of quantum transport in disordered two dimensional graphene and graphene nanoribbons. By using the Kubo and the Landauer approaches, transport length scales in the diffusive (mean free path and charge mobilities) and localized regimes (localization lengths) are computed, assuming a short range disorder (Anderson-type). The electronic systems are found to undergo a conventional Anderson localization in the zero-temperature limit, in agreement with localization scaling theory. Localization lengths in weakly disordered ribbons are found to strongly fluctuate depending on their edge symmetry, but always remain several orders of magnitude smaller than those computed for 2D graphene for the same disorder strength. This pinpoints the role of transport dimensionality and edge effects.

16.
Nano Lett ; 8(12): 4146-50, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19367959

ABSTRACT

We report on a theoretical study of surface roughness effects on charge transport in silicon nanowires with three different crystalline orientations, [100], [110] and [111]. Using an atomistic tight-binding model, key transport features such as mean-free paths, charge mobilities, and conductance scaling are investigated with the complementary Kubo-Greenwood and Landauer-Büttiker approaches. The anisotropy of the band structure of bulk silicon results in a strong orientation dependence of the transport properties of the nanowires. The best orientations for electron and hole transport are found to be the [110] and [111] directions, respectively.

17.
Nano Lett ; 7(9): 2596-601, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17722944

ABSTRACT

Quantitative structural information about epitaxial arrays of nanowires are reported for a InAs/InP longitudinal heterostructure grown by chemical beam epitaxy on an InAs (111)B substrate. Grazing incidence X-ray diffraction allows the separation of the nanowire contribution from the substrate overgrowth and gives averaged information about crystallographic phases, epitaxial relationships (with orientation distribution), and strain. In-plane strain inhomogeneities, intrinsic to the nanowires geometry, are measured and compared to atomistic simulations. Small-angle X-ray scattering evidences the hexagonal symmetry of the nanowire cross-section and provides a rough estimate of size fluctuations.


Subject(s)
Arsenicals/chemistry , Indium/chemistry , Models, Chemical , Models, Molecular , Nanotubes/chemistry , Nanotubes/ultrastructure , Phosphines/chemistry , X-Ray Diffraction/methods , Computer Simulation , Crystallization/methods , Elasticity , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Stress, Mechanical , Surface Properties
18.
Philos Trans A Math Phys Eng Sci ; 361(1803): 259-72; discussion 272-3, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12639382

ABSTRACT

Several recent theoretical advances concerning semiconductor quantum dots are reviewed. First of all, the effect of the quantum confinement on the energy gap is revisited on the basis of GW and Bethe-Salpeter calculations, showing that the excitonic gap is practically equal to the ordinary eigenvalue gap of single-particle approximations. The second part demonstrates that it is now possible to calculate the conductance peaks for the tunnelling current through a nanostructure. Finally, we discuss in some detail the concept of a macroscopic dielectric constant for nanostructures, showing that, except for a thin surface layer, the local dielectric constant still keeps its bulk value down to pretty small nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...