Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nutrition ; 124: 112452, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38669831

ABSTRACT

In the developing world, the twin challenges of depleted health and growing issue of food waste management loom large, demanding simultaneous attention and innovative solutions. This review explores how these issues can be effectively mitigated while shedding light on the transformative impact of food waste valorization on health management. A spotlight is cast on vitamin A deficiency (VAD), an acute public health concern, especially prevalent in South Asia, driven by economic constraints, sociocultural factors, inadequate diets, and poor nutrient absorption. VAD's devastating effects are exacerbated by limited education, lack of sanitation, ineffective food regulations, and fragile monitoring systems, disproportionately affecting children and women of childbearing age. Recent studies in South Asian countries have revealed rising rates of illness and death, notably among children and women of childbearing age, due to VAD. To address inadequate dietary intake in children utilizing vegetable waste, particularly from carrots and beetroot, which are rich in ß-carotene, and betalains, respectively, offers a sustainable solution. Extracting these compounds from vegetable waste for supplementation, fortification, and dietary diversification could significantly improve public health, addressing both food waste and health disparities economically. This approach presents a compelling avenue for exploration and implementation. In summary, this review presents an integrated approach to tackle health and food waste challenges in the developing world. By tapping into the nutritional treasure troves within vegetable waste, we can enhance health outcomes while addressing food waste, forging a brighter and healthier future for communities in need.

2.
J Food Sci ; 89(3): 1642-1657, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317411

ABSTRACT

ß-Carotene, a precursor of vitamin A, can alleviate the deficiency of this vitamin prevalent worldwide. Earlier research studies have addressed the extraction of ß-carotene at relatively low temperatures (up to 70°C) due to its perceived instability at higher temperatures, as a result of which extraction rates recorded are relatively low. This study models the net rate of ß-carotene extraction by considering both extraction and degradation kinetics. The model developed, which accounts for degradation occurring in solid and extract phases, has been experimentally validated for the extraction of ß-carotene from freeze-dried carrot powder into sunflower oil over a range of temperatures 90-150°C. This study also gives insights into the application of sunflower oil as a carrier for ß-carotene during cooking and food processing, by monitoring and modeling the thermal degradation and isomerization of ß-carotene at temperatures up to 220°C. The modeling of extraction kinetics shows that it is possible to achieve viable extraction rates by employing temperatures in the range (90-150°C) for relatively short times (<5 min). The degradation kinetics shows that almost 75% of the ß-carotene can survive heating at 180°C for 10 min-indicating the possibility of using ß-carotene enriched edible oils for frying. This study also reports on the formation of three isomers of ß-carotene identified using HPLC: trans-, 9-cis, and 13-cis. The reaction network model developed in this study was able to account for the transient variation of the concentration of all three isomers. PRACTICAL APPLICATION: ß-Carotene is a precursor of vitamin A and its consumption can potentially alleviate the deficiency of this vitamin prevalent worldwide. This study validates a model for the extraction of ß-carotene in sunflower oil, which takes into account extraction as well as degradation occurring during extraction, so that a rational method is available for the design of efficient extractors for this purpose. This paper also establishes the thermal stability of ß-carotene under frying conditions by quantifying its thermal degradation as well as isomerization.


Subject(s)
Daucus carota , beta Carotene , beta Carotene/metabolism , Vitamin A , Sunflower Oil , Powders , Temperature , Vitamins , Kinetics
3.
Food Res Int ; 161: 111884, 2022 11.
Article in English | MEDLINE | ID: mdl-36192997

ABSTRACT

This work focuses on understanding the action of a novel seaweed extract with anti-browning functionality in fresh-cut apples. Organic fresh-cut apples were coated by immersion in an aqueous Codium tomentosum seaweed extract (0.5 % w/v), packaged under ambient atmospheric conditions in plastic bags, and stored at 4 ˚C for 15 days. Browning-related enzymatic activities, as well as targeted gene expression related to superficial browning, were monitored immediately after coating and followed at five-day intervals, until a final storage period of 15 days. Gene expression was particularly affected one hour after coating application (day 0), with no expression registered for peroxidase (mdPOD) and phenylalanine ammonia-lyase (mdPAL) genes in the coated samples. A reduction in polyphenol oxidase expression levels was also observed. After 15 days of storage, the coated samples developed lower browning levels and presented distinctly lower activities of polyphenol oxidase and peroxidase - the oxidative enzymes predominantly involved in enzymatic browning. The observed post-coating suppression of mdPAL and mdPOD expression, and reduction in mdPPO expression, suggest that the seaweed C. tomentosum extract delays the activation of these genes, and decreases enzymatic activity, which in turn accounts for the coating's anti-browning effect.


Subject(s)
Malus , Catechol Oxidase/genetics , Catechol Oxidase/metabolism , Malus/metabolism , Peroxidase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Extracts/pharmacology , Plastics
4.
J Sci Food Agric ; 102(12): 5440-5451, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35352371

ABSTRACT

BACKGROUND: The physicochemical characteristics, antioxidant properties, and bacterial profiles of Heterotrigona itama, Apis dorsata, and Apis mellifera honey of Malaysian origin were studied and the results were assessed using Pearson correlation analysis and canonical correspondence analysis (CCA). RESULTS: The analysis showed that the Mellifera honey was characterized by high total sugar content (717.5 g kg-1 ); the Itama honey was characterized by high free acidity (347.5 meq kg-1 ); and the Dorsata honey was characterized by high radical scavenging activity (RSA; 69.3%RSA), total phenolic content (TPC; 1284.5 mg GAE kg-1 ) and hydroxymethylfurfural (HMF; 51.5 mg kg-1 ). Pearson correlation analysis showed that the TPC was positively correlated with HMF as well as RSA. The bacterial profile of Mellifera honey was significantly less diverse than Itama and Dorsata honey. Mellifera and Itama honey seemed to harbour a significant abundance of lactic acid bacteria, with relative abundance of 0.339 and 0.195, which suggests that it possesses probiotic potential. The Dorsata honey, however, contained pathogenic Clostridium genus, constituting 5% of its bacterial profile. CONCLUSION: The characteristic properties of the three investigated honey, Itama, Dorsata, and Mellifera were identified. The distinctive characteristics of the honey varieties informed the development of appropriate processing strategies for retaining the beneficial qualities of raw honey. It is hoped that the results of this study will shine light on Malaysian honey in a highly competitive global market. © 2022 Society of Chemical Industry.


Subject(s)
Honey , Probiotics , Animals , Antioxidants/analysis , Bees , Honey/analysis , Multivariate Analysis , Phenols/analysis , Probiotics/analysis
5.
Molecules ; 25(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708709

ABSTRACT

Etlingera pavieana (Pierre ex Gagnep.) R.M.S. is a rhizomatous plant in the Zingiberaceae family which could be freshly eaten, used as a condiment or as a traditional remedy. Our work investigated the chemical composition and antimicrobial activity of the E. pavieana essential oils extracted from the rhizome (EOEP). We extracted the EOEP from the rhizome by hydrodistillation and analyzed the chemical composition by headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC/MS). A total of 22 volatile compounds were identified where trans-anethole (78.54%) and estragole (19.36%) were the major components in the EOEP. The antimicrobial activity of EOEP was evaluated based on the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values using the broth dilution method and enumerating cell death overtime. Our work shows that the EOEP exhibits potent antibacterial activity against foodborne pathogenic Gram-positive bacteria, namely Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in the range of 0.1-0.3% (v/v). We further investigated the mechanism of EOEP inhibition using Synchrotron Fourier transformation infrared (FTIR) microspectroscopy. Here, we show significant differences in DNA/nucleic acid, proteins and cell membrane composition in the bacterial cell. To conclude, EOEP exhibited antimicrobial activity against foodborne pathogens, especially the Gram-positive bacteria associated with ready-to-eat (RTE) food and, thus, has the potential to serve as a natural preservative agent in RTE products.


Subject(s)
Anti-Infective Agents/chemistry , Oils, Volatile/chemistry , Volatile Organic Compounds/chemistry , Zingiberaceae/chemistry , Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Gas Chromatography-Mass Spectrometry , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/pathogenicity , Oils, Volatile/pharmacology , Solid Phase Microextraction , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Volatile Organic Compounds/pharmacology
6.
Int J Biol Macromol ; 157: 212-219, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32339572

ABSTRACT

Stable silver nanoparticles (AgNPs) of size 80 ± 11 nm produced by chitosan (CH) mediated green synthesis were blended with polyvinyl alcohol (PVA) to form electrospun fibrous composite nano-layers (FCNLs). The chitosan acted as the stabilising as well as an antimicrobial agent in combination with the AgNPs which were characterised using UV-visible spectrophotometry, dynamic light scattering (DLS) and scanning electron microscopy (SEM). The crystallinity and chemical nature of the electrospun composite was characterised by using X-ray diffraction (XRD) and FTIR spectroscopy, respectively, and its hydrophobicity was characterised by measuring the water contact angle. The electrospun composite showed effective antimicrobial activity against Listeria monocytogenes (gram +ve) and Escherichia coli (gram -ve) bacterial species. The electrospun composite, when tested as packaging material for meat, showed bio-activity and extended the meat shelf-life by one week. The electrospun nanocomposite is able to inhibit microbial degradation of packaged food and extend its keeping quality in an eco-friendly manner.


Subject(s)
Chitosan/chemistry , Food Packaging , Polyvinyl Alcohol/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Food Microbiology , Listeria monocytogenes/drug effects , Meat/microbiology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Nanocomposites/chemistry , Silver/chemistry , X-Ray Diffraction
7.
J Sci Food Agric ; 100(4): 1588-1597, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31773733

ABSTRACT

BACKGROUND: Moringa oleifera (MO) kernel oil is categorized as a high-oleic oil that resembles olive oil. However, unlike olive trees, MO trees are largely present in most subtropical and tropical countries. In these countries, therefore, the benefits of oleic acid can be obtained at a cheaper price through the consumption of MO kernel oil. This study reports on the effect of different extraction methods on oxidative properties of MO kernel oil during storage for 140 days at 13, 25, and 37 °C. RESULTS: All aqueous enzymatic extraction (AEE)-based methods generally resulted in oil with better oxidative properties and higher tocopherol retention than the use of solvent. Prior to AEE, boiling pre-treatment deactivated the hydrolytic enzymes and preserved the oil's quality. In contrast, high-pressure processing (HPP) pre-treatment accelerated hydrolytic reaction and resulted in an increase in free fatty acids after 140 days at all temperatures. No significant changes were detected in the oils' iodine values and fatty acid composition. The tocopherol content decreased significantly at both 13 and 25 °C after 60 days in the oil from SE method, and after 120 days in oils from AEE-based methods. CONCLUSION: These findings are significant in highlighting the extraction methods resulting in crude MO kernel oil with greatest oxidative stability in the storage conditions tested. Subsequently, the suitable storage condition of the oil prior to refining can be determined. Further studies are recommended in determining the suitable refining processes and parameters for the MO kernel oil prior to application in variety food products. © 2019 Society of Chemical Industry.


Subject(s)
Food Handling/methods , Moringa oleifera/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Food Storage , Oxidation-Reduction , Seeds/chemistry
8.
Mol Nutr Food Res ; 62(18): e1700980, 2018 09.
Article in English | MEDLINE | ID: mdl-29806738

ABSTRACT

SCOPE: Broccoli contains glucosinolate glucoraphanin, which, in the presence of myrosinase, can hydrolyze to isothiocyanate sulforaphane, reported to have anticarcinogenic activity. However, the myrosinase enzyme is denatured on cooking. Addition of an active source of myrosinase, such as from powdered mustard seed, to cooked Brassica vegetables can increase the release of health beneficial isothiocyanates; however, this has not previously been proven in vivo. METHODS AND RESULTS: The concentration of sulforaphane metabolite (sulforaphane N-acetyl-l-cysteine [SF-NAC]) in 12 healthy adults after the consumption of 200 g cooked broccoli, with and without 1 g powdered brown mustard, was studied in a randomized crossover design. During the 24-h period following the consumption of the study sample, all urine was collected. SF-NAC content was assayed by HPLC. When study subjects ingested cooked broccoli alone, mean urinary SF-NAC excreted was 9.8 ± 5.1 µmol per g creatinine, and when cooked broccoli was consumed with mustard powder, this increased significantly to 44.7 ± 33.9 µmol SF-NAC per gram creatinine. CONCLUSION: These results conclude that when powdered brown mustard is added to cooked broccoli, the bioavailability of sulforaphane is over four times greater than that from cooked broccoli ingested alone.


Subject(s)
Brassica , Diet , Glycoside Hydrolases/administration & dosage , Isothiocyanates/pharmacokinetics , Mustard Plant/enzymology , Seeds/enzymology , Adolescent , Adult , Biological Availability , Cooking , Creatinine/urine , Cross-Over Studies , Glucosinolates/administration & dosage , Glucosinolates/pharmacokinetics , Humans , Imidoesters/administration & dosage , Imidoesters/pharmacokinetics , Isothiocyanates/administration & dosage , Isothiocyanates/urine , Middle Aged , Mustard Plant/chemistry , Oximes , Powders , Protein Denaturation , Seeds/chemistry , Sulfoxides , Vegetables , Young Adult
9.
J Sci Food Agric ; 98(9): 3290-3298, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29239475

ABSTRACT

BACKGROUND: This research employed a mild subcritical alkaline water (mild-SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild-SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS-RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content. RESULTS: Optimal proteolysis conditions were 20 mL kg-1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS-RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g-1 , 57.72 µmol FeSO4 g-1 and 22.73 mg gallic acid g-1 respectively, with relatively low HMF level (0.21 mg g-1 ). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p-coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild-SAW/Protease G6 process enhanced the release of active compounds. CONCLUSION: The process of mild-SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry.


Subject(s)
Food Handling/methods , Plant Extracts/chemistry , Seeds/chemistry , Seeds/metabolism , Antioxidants/analysis , Fats/analysis , Hydrolysis , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Oryza , Peptide Hydrolases/metabolism , Phenols/analysis , Plant Proteins/analysis , Seeds/ultrastructure
10.
J Sci Food Agric ; 97(6): 1846-1853, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27491506

ABSTRACT

BACKGROUND: The use of biopolymer coatings appears as a good alternative to preserve highly perishable fruits, as well as the environment. Proteins generally produce films with good mechanical properties, although their highly hydrophilic nature limits the use in many applications. Nanoparticles, such as nanoclays, can play a critical role in improving barrier properties. The present study evaluated the effect of the addition of montmorillonite (MMT)-nanoparticles to a lacto-biopolymer coating, focusing on: (i) the morphological, thermal and barrier properties of the material and (ii) the shelf life of coated fresh strawberries. RESULTS: The addition of MMT improved the water vapor barrier property. Morphological and thermal analysis indicated a good interaction between the milk protein and the nanoclay, which was intercalated within the milk protein base (MPB) matrix, offering a more tortuous path to diffusing migrants. The MMT-MPB coating helped to significantly (P ≤ 0.05) reduce the weight loss, as well as oxygen uptake and the release of carbon dioxide, and improved the fruit firmness and reduced mould and yeast load compared to the uncoated fruits. The addition of MMT gave statistical difference (P ≤ 0.05) in terms of weight loss, subjective global appearance and purchase intention of coated fresh strawberries. CONCLUSION: The addition of nanofillers, such as MMT, into protein-based coating could improve its water vapour barrier and could affect, positively, some parameters of the shelf life of coated strawberries. © 2016 Society of Chemical Industry.


Subject(s)
Bentonite/pharmacology , Biopolymers/pharmacology , Food Preservation/methods , Food Preservatives/pharmacology , Fragaria/chemistry , Fruit/chemistry , Food Preservation/instrumentation , Fragaria/microbiology , Fruit/microbiology , Fungi/drug effects , Fungi/growth & development
11.
J Am Oil Chem Soc ; 93(11): 1541-1549, 2016.
Article in English | MEDLINE | ID: mdl-27795569

ABSTRACT

Tiger nut oil is a novel oil that requires more research data on its characteristics. In this study, the oil was extracted using both enzyme-aided pressing (EAP) and aqueous enzymatic extraction (AEE) methods. Using enzymes as a pre-treatment prior to mechanical pressing increased the concentration of some phenolic acids and tocopherols present in extracted oils compared to controls. High pressure processing as a pre-treatment before aqueous enzymatic extraction also enhanced tocopherols and total polyphenolic content in oils. The percentage free fatty acid and peroxide values indicated that under the initial extraction parameters, the oils were stable and they all met the standards for virgin olive oil set by the International Olive Oil Council. Residual meals from both extraction processes contained low protein contents ranging from 2.4 to 4.6 %. Additionally, EAP and AEE meals contained low DP (degree of polymerisation) sugars that appeared as 1-kestose (DP3) and nystose (DP4). EAP had the highest total DP3 and DP4 sugar content of 82.5 mg/g. These sugars would need further assessment to verify their identity and determine their suitability as a potential food.

12.
Food Chem ; 211: 400-8, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27283648

ABSTRACT

This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step.


Subject(s)
Moringa oleifera/chemistry , Moringa oleifera/enzymology , Plant Oils/analysis , Water/chemistry , Emulsions/analysis , Emulsions/metabolism , Moringa oleifera/metabolism , Plant Oils/metabolism
13.
Food Chem ; 194: 354-61, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26471565

ABSTRACT

Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33% on a dry defatted basis, which represents a recovery of 90% of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.


Subject(s)
Cyperus/chemistry , Nuts/chemistry , Oils/chemistry , Polyphenols/chemistry , Particle Size , Pressure
14.
Food Chem ; 187: 485-90, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-25977054

ABSTRACT

This study investigates the effects of temperature and pressure on inactivation of myrosinase extracted from black, brown and yellow mustard seeds. Brown mustard had higher myrosinase activity (2.75 un/mL) than black (1.50 un/mL) and yellow mustard (0.63 un/mL). The extent of enzyme inactivation increased with pressure (600-800 MPa) and temperature (30-70° C) for all the mustard seeds. However, at combinations of lower pressures (200-400 MPa) and high temperatures (60-80 °C), there was less inactivation. For example, application of 300 MPa and 70 °C for 10 min retained 20%, 80% and 65% activity in yellow, black and brown mustard, respectively, whereas the corresponding activity retentions when applying only heat (70° C, 10 min) were 0%, 59% and 35%. Thus, application of moderate pressures (200-400 MPa) can potentially be used to retain myrosinase activity needed for subsequent glucosinolate hydrolysis.


Subject(s)
Glycoside Hydrolases/chemistry , Mustard Plant/enzymology , Plant Proteins/chemistry , Sinapis/enzymology , Enzyme Stability , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Hot Temperature , Mustard Plant/chemistry , Mustard Plant/classification , Plant Proteins/metabolism , Pressure , Seeds/chemistry , Seeds/classification , Seeds/enzymology , Sinapis/chemistry , Sinapis/classification
15.
Food Chem ; 181: 85-93, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25794725

ABSTRACT

Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.


Subject(s)
Food Handling/methods , Manihot/chemistry , Plant Extracts/isolation & purification , Starch/isolation & purification , Food Handling/instrumentation , Hot Temperature , Plant Extracts/chemistry , Pressure , Starch/chemistry
16.
J Food Sci ; 80(2): E349-58, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25619624

ABSTRACT

Air frying is being projected as an alternative to deep fat frying for producing snacks such as French fries. In air frying, the raw potato sections are essentially heated in hot air containing fine oil droplets, which dehydrates the potato and attempts to impart the characteristics of traditionally produced French fries, but with a substantially lower level of fat absorbed in the product. The aim of this research is to compare: (1) the process dynamics of air frying with conventional deep fat frying under otherwise similar operating conditions, and (2) the products formed by the 2 processes in terms of color, texture, microstructure, calorimetric properties, and sensory characteristics. Although, air frying produced products with a substantially lower fat content but with similar moisture contents and color characteristics, it required much longer processing times, typically 21 min in relation to 9 min in the case of deep fat frying. The slower evolution of temperature also resulted in lower rates of moisture loss and color development reactions. Differential scanning calorimetry (DSC) studies revealed that the extent of starch gelatinization was also lower in the case of air fried product. In addition, the 2 types of frying also resulted in products having significantly different texture and sensory characteristics.


Subject(s)
Cooking/methods , Solanum tuberosum/chemistry , Calorimetry, Differential Scanning , Color , Consumer Behavior , Hot Temperature , Humans , Microscopy, Electron, Scanning , Odorants , Taste
17.
J Food Sci ; 80(1): E66-72, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25492403

ABSTRACT

Fried products impose a health concerns due to considerable amount of oil they contain. Production of snack foods with minimal oil content and good management of oil during frying to minimize the production of toxic compounds continue to be challenging aims. This paper aims to investigate the possibility of producing a fat-free food snack by replacing frying oil with a nonfat medium. Glucose was melted and its temperature was then brought to 185 °C and used to fry potato strips, to obtain a product referred here as glucose fries. The resulting product was compared with French fries prepared conventionally under conditions that resulted in similar final moisture content. The resulting products were also examined for crust formation, texture parameters, color development and glucose content. Stereo microscope images showed that similar crusts were formed in the glucose fries and French fries. Texture parameters were found to be similar for both products at 5 and 2 mm penetration depth. The maximum hardness at 2 mm penetration depth was also similar for both products, but different from cooked potato. The color development that characterized French fries was also observed in glucose fries. The glucose content in glucose fries was found to be twice the content of French fries, which is to be expected because glucose absorbed or adhered to the surface. In conclusion, glucose fries, with similar texture and color characteristics to that of French fries, can be prepared by using a nonfat frying medium.


Subject(s)
Cooking/methods , Glucose/chemistry , Color , Dietary Fats/analysis , Solanum tuberosum/chemistry , Water/chemistry
18.
J Food Sci ; 79(9): S1756-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25156799

ABSTRACT

Broccoli, a rich source of glucosinolates, is a commonly consumed vegetable of the Brassica family. Hydrolysis products of glucosinolates, isothiocyanates, have been associated with health benefits and contribute to the flavor of Brassica. However, boiling broccoli causes the myrosinase enzyme needed for hydrolysis to denature. In order to ensure hydrolysis, broccoli must either be mildly cooked or active sources of myrosinase, such as mustard seed powder, can be added postcooking. In this study, samples of broccoli were prepared in 6 different ways; standard boiling, standard boiling followed by the addition of mustard seeds, sous vide cooking at low temperature (70 °C) and sous vide cooking at higher temperature (100 °C) and sous vide cooking at higher temperature followed by the addition of mustard seeds at 2 different concentrations. The majority of consumers disliked the mildly cooked broccoli samples (70 °C, 12 min, sous vide) which had a hard and stringy texture. The highest mean consumer liking was for standard boiled samples (100 °C, 7 min). Addition of 1% mustard seed powder developed sensory attributes, such as pungency, burning sensation, mustard odor, and flavor. One cluster of consumers (32%) found mustard seeds to be a good complement to cooked broccoli; however, the majority disliked the mustard-derived sensory attributes. Where the mustard seeds were partially processed, doubling the addition to 2% led to only the same level of mustard and pungent flavors as 1% unprocessed seeds, and mean consumer liking remained unaltered. This suggests that optimization of the addition level of partially processed mustard seeds may be a route to enhance bioactivity of cooked broccoli without compromising consumer acceptability.


Subject(s)
Brassica/chemistry , Consumer Behavior , Mustard Plant/chemistry , Vegetables/chemistry , Adolescent , Adult , Aged , Cooking , Female , Humans , Male , Middle Aged , Seeds/chemistry , Spices , Taste , Young Adult
19.
J Food Sci ; 78(6): E845-52, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23638616

ABSTRACT

Crystallization must occur in honey in order to produce set or creamed honey; however, the process must occur in a controlled manner in order to obtain an acceptable product. As a consequence, reliable methods are needed to measure the crystal content of honey (ϕ expressed as kg crystal per kg honey), which can also be implemented with relative ease in industrial production facilities. Unfortunately, suitable methods do not currently exist. This article reports on the development of 2 independent offline methods to measure the crystal content in honey based on differential scanning calorimetry and high-performance liquid chromatography. The 2 methods gave highly consistent results on the basis of paired t-test involving 143 experimental points (P > 0.05, r2 = 0.99). The crystal content also correlated with the relative viscosity, defined as the ratio of the viscosity of crystal containing honey to that of the same honey when all crystals are dissolved, giving the following correlation: µr=1-1398.8∅2.318. This correlation can be used to estimate the crystal content of honey in industrial production facilities. The crystal growth rate at a temperature of 14 °C-the normal crystallization temperature used in practice-was linear, and the growth rate also increased with the total glucose content in the honey.


Subject(s)
Calorimetry, Differential Scanning/methods , Chromatography, High Pressure Liquid/methods , Glucose/analysis , Honey/analysis , Crystallization , Temperature , Viscosity
20.
Food Chem ; 138(2-3): 1734-41, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23411305

ABSTRACT

Sulforaphane, a naturally occurring cancer chemopreventive, is the hydrolysis product of glucoraphanin, the main glucosinolate in broccoli. The hydrolysis requires myrosinase isoenzyme to be present in sufficient activity; however, processing leads to its denaturation and hence reduced hydrolysis. In this study, the effect of adding mustard seeds, which contain a more resilient isoform of myrosinase, to processed broccoli was investigated with a view to intensify the formation of sulforaphane. Thermal inactivation of myrosinase from both broccoli and mustard seeds was studied. Thermal degradation of broccoli glucoraphanin was investigated in addition to the effects of thermal processing on the formation of sulforaphane and sulforaphane nitrile. Limited thermal degradation of glucoraphanin (less than 12%) was observed when broccoli was placed in vacuum sealed bag (sous vide) and cooked in a water bath at 100°C for 8 and 12 min. Boiling broccoli in water prevented the formation of any significant levels of sulforaphane due to inactivated myrosinase. However, addition of powdered mustard seeds to the heat processed broccoli significantly increased the formation of sulforaphane.


Subject(s)
Brassica/chemistry , Cooking/methods , Mustard Plant/chemistry , Seeds/chemistry , Thiocyanates/analysis , Glucosinolates/analysis , Hot Temperature , Imidoesters/analysis , Isothiocyanates , Oximes , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...