Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 46(8): 1217-1223, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31197515

ABSTRACT

This is the first report of a fully annotated genomic sequence of Streptomyces spectabilis NRRL-2792, isolated and identified by The Upjohn Company in 1961. The genome was assembled into a single scaffold for annotation and analysis. The chromosome is linear, 9.5 Mb in size which is one of the largest Streptomyces genomes yet described, has a G+C content of 72%, and encodes for approximately 7943 genes. Antibiotic Secondary Metabolite Analysis Shell (antiSMASH) and Basic Local Alignment Search Tool (BLAST) bioinformatics analyses identified six complete secondary metabolite biosynthetic gene clusters for ectoine, melanin, albaflavenone, spectinomycin, 2-methylisoborneol and coelichelin. Additionally, biosynthetic clusters were identified that shared ≥ 90% gene content with complestatin, hopene, neoaureothin, or undecylprodigiosin. Thirty-one other likely secondary metabolite gene clusters were identified by antiSMASH. BLAST identified two subsets of undecylprodigiosin biosynthetic genes at polar opposites of the chromosome; their duplication was subsequently confirmed by primer walking.


Subject(s)
Multigene Family , Anti-Bacterial Agents/metabolism , Computational Biology , Genome, Bacterial , Genomics , Prodigiosin/analogs & derivatives , Software , Streptomyces/genetics
2.
Metab Eng Commun ; 7: e00076, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30197865

ABSTRACT

Alkenes are industrially important platform chemicals with broad applications. In this study, we report a direct microbial biosynthesis of terminal alkenes from fermentable sugars by harnessing a P450 fatty acid (FA) decarboxylase from Macrococcus caseolyticus (OleTMC). We first characterized OleTMC and demonstrated its in vitro H2O2-independent activities towards linear C10:0-C18:0 FAs, with higher activity for C16:0-C18:0 FAs. Next, we engineered a de novo alkene biosynthesis pathway, consisting of OleTMC and an engineered E. coli thioesterase (TesA) with compatible substrate specificities, and introduced this pathway into E. coli for terminal alkene biosynthesis from glucose. The recombinant E. coli EcNN101 produced a total of 17.78 ±â€¯0.63 mg/L odd-chain terminal alkenes, comprising of 0.9% ±â€¯0.5% C11 alkene, 12.7% ±â€¯2.2% C13 alkene, 82.7% ±â€¯1.7% C15 alkene, and 3.7% ±â€¯0.8% C17 alkene, and a yield of 0.87 ±â€¯0.03 (mg/g) on glucose. To improve alkene production, we identified and overcame the electron transfer limitation in OleTMC, by introducing a two-component redox system, consisting of a putidaredoxin reductase (CamA) and a putidaredoxin (CamB) from Pseudomonas putida, into EcNN101, and demonstrated the alkene production increased ~2.8 fold. Finally, to better understand the substrate specificities of OleTMC observed, we employed in silico protein modeling to illuminate the functional role of FA binding pocket.

3.
J Biol Chem ; 289(19): 13101-11, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24659780

ABSTRACT

In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate.


Subject(s)
Bacterial Proteins/chemistry , Catalase/chemistry , Nostoc/enzymology , Prostaglandin-Endoperoxide Synthases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalase/genetics , Catalase/metabolism , Nostoc/genetics , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...