Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 10(13): 2148-2159, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35262119

ABSTRACT

Silver nanoparticles, shaped and stabilized by various means, are known to alter biological systems and promote cytotoxicity. However, the precise mechanism by which they induce toxic outcomes in cancer cells is poorly understood. Using a combination of cellular and biophysical assays and proteomic and metabolomic analyses, we report the cytotoxic mechanism of action of tryptone-stabilized silver nanoparticles (T-AgNPs). After their facile synthesis and characterization using an assortment of spectroscopic techniques and transmission electron microscopy, the mechanism of action of the particles was elucidated using MDA-MB-231 breast cancer cells as the cell model. The nanoparticles inhibited the proliferative (IC50:100 ± 3 µg mL-1) and clonogenic potential of the cells. Flow cytometry analyses revealed an absence of phase-specific cell cycle arrest but extensive cell death in the treated cells. The mechanism of action of the particles consisted of their direct binding to the microtubule-building protein tubulin and the disruption of its helical integrity, as confirmed via fluorometric analysis and far-UV spectropolarimetry, respectively. The binding hampered the assembly of microtubules, as confirmed via polymer mass analysis of in vitro assembled, purified tubulin and immunofluorescence imaging of cellular microtubules. Proteomic and metabolomic analyses revealed the downregulation of lipid metabolism to be a synergistic contributor to cell death. Taken together, we report a novel antiproliferative mechanism of action of T-AgNPs that involves tubulin disruption and the downregulation of lipid metabolism.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival , Female , Humans , Metal Nanoparticles/chemistry , Proteomics , Silver/chemistry , Silver/pharmacology
2.
Cell Biol Toxicol ; 36(2): 145-164, 2020 04.
Article in English | MEDLINE | ID: mdl-31820165

ABSTRACT

Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.


Subject(s)
Autophagy/physiology , Cell Death/physiology , Eukaryota/metabolism , Homeostasis/physiology , Animals , Caspases/metabolism , Humans , Signal Transduction/physiology
3.
Sci Rep ; 9(1): 19126, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836782

ABSTRACT

Gold nanoparticles of different sizes, shapes, and decorations exert a variety of effects on biological systems. We report a novel mechanism of action of chemically modified, tryptone-stabilized gold nanoparticles (T-GNPs) in the triple-negative breast cancer (TNBC) cell line, MDA-MB-231. The T-GNPs, synthesized using HAuCl4.3H2O and tryptone and characterized by an assortment of spectroscopy techniques combined with high-resolution electron microscopy, demonstrated strong antiproliferative and anti-clonogenic potential against MDA-MB-231 cells, arresting them at the G1 phase of the cell cycle and promoting apoptosis. The molecular mechanism of action of these particles involved induction of unipolar clustering and hyper amplification of the supernumerary centrosomes (a distinctive feature of many tumour cells, including TNBC cells). The clustering was facilitated by microtubules with suppressed dynamicity. Mass spectrometry-assisted proteomic analysis revealed that the T-GNP-induced G1 arrest was facilitated, at least in part, by downregulation of ribosome biogenesis pathways. Due to the presence of supernumerary centrosomes in many types of tumour cells, we propose chemical induction of their unipolar clustering as a potential therapeutic strategy.


Subject(s)
Cell Cycle Checkpoints/drug effects , Centrosome/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Peptones/chemistry , Triple Negative Breast Neoplasms/genetics , Apoptosis , Cell Line, Tumor , Cell Survival , G1 Phase/drug effects , Humans , Membrane Potential, Mitochondrial , Microscopy, Electron , Proteomics , Reactive Oxygen Species , Spectrophotometry
4.
Biomed Pharmacother ; 89: 902-917, 2017 May.
Article in English | MEDLINE | ID: mdl-28292018

ABSTRACT

Several studies suggest surface modifications of gold nanoparticles (AuNPs) by capping agents or surface coatings could play an important role in biological systems, and site directed delivery. The present study was carried out to assess the antioxidant and apoptotic activities of the Vitis vinifera peel and seed gold nanoparticles in experimentally induced cancer in Swiss albino mice. 12-dimethylbenz [a] anthracene (DMBA) (single application) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (thrice a week) were applied on the dorsal area of the skin to induce skin papillomagenesis in Swiss albino mice for 16 weeks. Gold nanoparticles were synthesized using Vitis vinifera peel and seed aqueous extracts and characterized by Transmission electron microscopic (TEM) analyses. On topical application, peel and seed gold nanoparticles demonstrated chemopreventive potential by significantly (p<0.05) reducing the cumulative number of tumors while increasing the antioxidant enzyme activities in the gold nanoparticles treated mice. The down-regulated expression of mutant p53, Bcl-2 and the levels of pan-cytokeratins might have facilitated the process of apoptosis in the chemical carcinogenesis process. The results were supported by the histopathological evaluation which exhibited mild dysplasia and acanthosis in the skin tissues of Vitis vinifera peel and seed AuNPs treated mice. Based on the present study, the chemopreventive action of Vitis vinifera peel and seed AuNPs is probably due to its ability to stimulate the antioxidant enzymes within the cells and suppressed abnormal skin cell proliferation that occurred during DMBA-induced skin papillomagenesis.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Gold/pharmacology , Metal Nanoparticles/chemistry , Seeds/chemistry , Vitis/chemistry , Animals , Anticarcinogenic Agents/pharmacology , Antioxidants/chemistry , Chemoprevention , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Gold/chemistry , Keratins/genetics , Keratins/metabolism , Male , Mice , Neoplasms, Experimental/drug therapy , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Skin Neoplasms/chemically induced , Skin Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Appl Biochem Biotechnol ; 181(3): 1140-1154, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27734287

ABSTRACT

There exists a complex and multifactorial relationship between diabetes and cardiovascular disease. Hyperglycemia is an important factor imposing damage (glucose toxicity) on cardiac cell leading to diabetic cardiomyopathy. There are substantial clinical evidences on the adverse effects of conventional therapies in the prevention/treatment of diabetic cardiovascular complications. Currently, green-synthesized nanoparticles have emerged as a safe, efficient, and inexpensive alternative for therapeutic uses. The present study discloses the silver nanoparticle biosynthesizing capability and cardioprotective potential of Syzygium cumini seeds already reported to have antidiabetic properties. Newly generated silver nanoparticles S. cumini MSE silver nanoparticles (SmSNPs) were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), zeta sizer, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Using methanolic extract of S. cumini seeds, an average size of 40-100-nm nanoparticles with 43.02 nm and -19.6 mV zeta potential were synthesized. The crystalline nature of SmSNPs was identified by using XRD. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays revealed the antioxidative potential to be 66.87 (±0.7) % and 86.07 (±0.92) % compared to 60.29 (±0.02) % and 85.67 (±1.27) % for S. cumini MSE. In vitro study on glucose-stressed H9C2 cardiac cells showed restoration in cell size, nuclear morphology, and lipid peroxide formation upon treatment of SmSNPs. Our findings concluded that S. cumini MSE SmSNPs significantly suppress the glucose-induced cardiac stress in vitro by maintaining the cellular integrity and reducing the oxidative damages therefore establishing its therapeutic potential in diabetic cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies/drug therapy , Hypoglycemic Agents , Lamiales/chemistry , Metal Nanoparticles/chemistry , Seeds/chemistry , Silver , Animals , Cell Line , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Rats , Silver/chemistry , Silver/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...