Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 28(8): 1092-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20143407

ABSTRACT

Using functional tissue engineering principles, our laboratory has produced tendon repair tissue which matches the normal patellar tendon force-displacement curve up to 32% of failure. This repair tissue will need to withstand more strenuous activities, which can reach or even exceed 40% of failure force. To improve the linear stiffness of our tissue engineered constructs (TECs) and tissue engineered repairs, our lab is incorporating the glycosaminoglycan chondroitin-6-sulfate (C6S) into a type I collagen scaffold. In this study, we examined the effect of C6S incorporation and mechanical stimulation cycle number on linear stiffness and mRNA expression (collagen types I and III, decorin and fibronectin) for mesenchymal stem cell (MSC)-collagen sponge TECs. The TECs were fabricated by inoculating MSCs at a density of 0.14 x 10(6) cells/construct onto pre-cut scaffolds. Primarily type I collagen scaffold materials, with or without C6S, were cultured using mechanical stimulation with three different cycle numbers (0, 100, or 3,000 cycles/day). After 2 weeks in culture, TECs were evaluated for linear stiffness and mRNA expression. C6S incorporation and cycle number each played an important role in gene expression, but only the interaction of C6S incorporation and cycle number produced a benefit for TEC linear stiffness.


Subject(s)
Chondroitin Sulfates/metabolism , Collagen/physiology , Tissue Scaffolds , Animals , Biomechanical Phenomena , Chondroitin Sulfates/pharmacology , Collagen Type I/biosynthesis , Collagen Type III/biosynthesis , Decorin , Extracellular Matrix Proteins/biosynthesis , Female , Fibronectins/biosynthesis , Mesenchymal Stem Cells/physiology , Proteoglycans/biosynthesis , Rabbits , Tensile Strength , Tissue Engineering , Tissue Scaffolds/chemistry
2.
Tissue Eng Part A ; 14(11): 1883-91, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18831687

ABSTRACT

In vitro mechanical stimulation has been reported to induce cell alignment and increase cellular proliferation and collagen synthesis. Our group has previously reported that in vitro mechanical stimulation of tissue-engineered tendon constructs significantly increases construct stiffness and repair biomechanics after surgery. However, these studies used a single mechanical stimulation profile, the latter composed of multiple components whose individual and combined effects on construct properties remain unknown. Thus, the purpose of this study was to understand the relative importance of a subset of these components on construct stiffness. To try to optimize the resulting mechanical stimulus, we used an iterative process to vary peak strain, cycle number, and cycle repetition while controlling cycle frequency (1 Hz), rise and fall times (25% and 17% of the period, respectively), hours of stimulation/day (8 h/day), and total time of stimulation (12 days). Two levels of peak strain (1.2 % and 2.4%), cycle number (100 and 3000 cycles/day), and cycle repetition (1 and 20) were first examined. Higher levels of peak strain and cycle number were then examined to optimize the stimulus using response surface methodology. Our results indicate that constructs stimulated with 2.4% strain, 3000 cycles/day, and one cycle repetition produced the stiffest constructs. Given the significant positive correlations we have previously found between construct stiffness and repair biomechanics at 12 weeks post-surgery, these in vitro enhancements offer the prospect of further improving repair biomechanics.


Subject(s)
Collagen/chemistry , Mesenchymal Stem Cells/cytology , Stress, Mechanical , Tissue Engineering/methods , Animals , Biomechanical Phenomena , Cells, Cultured , Female , Mesenchymal Stem Cells/physiology , Rabbits
3.
J Biomech ; 41(4): 822-8, 2008.
Article in English | MEDLINE | ID: mdl-18164020

ABSTRACT

Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack the initial stiffness at the time of surgery to resist the expected peak in vivo forces thereafter. Since the stiffness of these constructs has also been shown to positively correlate with the stiffness of the subsequent repairs, improving initial stiffness by appropriate selection of in vitro culture conditions would seem crucial. In this study we examined the individual and combined effects of collagen scaffold type, construct length, and mechanical stimulation on in vitro implant stiffness. Two levels each of scaffold material (collagen gel vs. collagen sponge), construct length (short vs. long), and mechanical stimulation (stimulated vs. non-stimulated) were examined. Our results indicate that all three treatment factors influenced construct linear stiffness. Increasing the length of the construct had the greatest effect on the stiffness compared to introducing mechanical stimulation or changing the scaffold material. A significant interaction was also found between length and stimulation. Of the eight groups studied, longer, stimulated, cell-sponge constructs showed the highest in vitro linear stiffness. We now plan in vivo studies to determine if higher stiffness constructs generate higher stiffness repairs 12 weeks after surgery and if in vitro construct stiffness continues to correlate with in vivo repair parameters like linear stiffness.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Tendons/physiology , Tissue Engineering , Tissue Scaffolds , Animals , Biomechanical Phenomena , Cell Line , Cells, Cultured , Collagen Type I/physiology , Elasticity , Female , Gels , Patella/injuries , Patella/physiology , Rabbits , Tendon Injuries/physiopathology , Tendon Injuries/surgery
4.
J Biomech Eng ; 129(6): 919-23, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18067397

ABSTRACT

Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)-collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5 min to a peak strain of 2.4%, for 8 h/day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048+/-0.009 versus 0.015+/-0.004; mean+/-SEM (standard error of the mean ) N/mm) and linear modulus (0.016+/-0.004 versus 0.005+/-0.001; mean+/-SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.


Subject(s)
Tendons , Tensile Strength/physiology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cells, Cultured , Collagen Type I/chemistry , Elasticity , Female , Gels/chemistry , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Rabbits , Stress, Mechanical , Tendons/chemistry , Tendons/cytology , Tendons/metabolism , Tissue Engineering/instrumentation , Transducers
5.
Tissue Eng ; 13(6): 1219-26, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17518715

ABSTRACT

Our group has shown that mechanical stimulation increases the stiffness of stem cell-collagen sponge constructs at 14 days in culture and subsequent rabbit patellar tendon repairs at 12 weeks postsurgery. What remains unclear is which genes might be responsible for this increase in stiffness. Therefore, the objective of this study was to determine how a tensile stimulus affects the gene expression of stem cell-collagen sponge constructs used to repair rabbit central patellar tendon defects. Tissue-engineered constructs were created by seeding mesenchymal stem cells (MSCs) from 10 adult rabbits at 0.14 x 10(6) cells/construct in type I collagen sponges. Half of the constructs were mechanically stimulated once every 5 min for 8 h/d to a peak strain of 2.4% for 2 weeks. The other half remained in an incubator without mechanical stimulation for 2 weeks. After 14 days in culture, half of the stimulated and nonstimulated constructs were prepared to determine the expression of collagen type I, collagen type III, decorin, fibronectin, and glyceraldehyde-3-phosphate dehydrogenase genes using real-time quantitative reverse transcriptase polymerase chain reaction. The remaining constructs were mechanically tested to determine their mechanical properties. Two weeks of in vitro mechanical stimulation significantly increased collagen type I and collagen type III gene expression of the stem cell-collagen sponge constructs. Stimulated constructs showed 3 and 4 times greater collagen type I (p = 0.0001) and collagen type III gene expression (p = 0.001) than nonstimulated controls. Stimulated constructs also had 2.5 times the linear stiffness and 4 times the linear modulus of nonstimulated constructs. However, mechanical stimulation did not significantly increase decorin or fibronectin gene expression (p = 0.2) after 14 days in culture. This study shows that mechanical stimulation of cell-sponge constructs produces similar increases in the expression of 2 structural genes, as well as linear stiffness and linear modulus.


Subject(s)
Collagen Type II/metabolism , Collagen Type I/metabolism , Gene Expression , Mechanotransduction, Cellular/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Animals , Cells, Cultured , Collagen Type I/chemistry , Elasticity , Female , Gene Expression/physiology , In Vitro Techniques , Patellar Ligament/injuries , Patellar Ligament/pathology , Patellar Ligament/surgery , Physical Stimulation , Rabbits , Stress, Mechanical , Tensile Strength
6.
J Biomech ; 40(11): 2523-9, 2007.
Article in English | MEDLINE | ID: mdl-17258749

ABSTRACT

Constructs containing autogenous mesenchymal stem cells (MSCs) seeded in collagen gels have been used by our group to repair rabbit central patellar tendon defect injuries. Although these cell-gel composites exhibit improved repair biomechanics compared to natural healing, they can be difficult to handle at surgery and lack the necessary stiffness to resist peak in vivo forces early thereafter. MSCs are typically suspended in collagen gels around two posts in the base of a well in a specially designed silicone dish. The distance between posts is approximately the length of the tendon wound site. MSCs contract the gel around the posts prior to removal of the construct for implantation at surgery. We hypothesized that in vitro construct alignment and stiffness might be enhanced in the midregion of the longer construct where the end effects of the posts on the bulk material (St. Venant effects) could be minimized. Rabbit MSCs were seeded in purified bovine collagen gel at 0.04 M cells/mg collagen. The cell-gel mixture was pipetted into silicone dishes having two post-to-post lengths (short: 11 mm and long: 51 mm) but equivalent well widths and depths and post diameters. After 14 days of incubation, tensile stiffness and modulus of the constructs were measured using equivalent grip-to-grip lengths. Collagen fiber orientation index or OI (which measures angular dispersion of fibers) was quantified using small angle light scattering (SALS). Long constructs showed significantly lower angular dispersion vs. short constructs (OI of 41.24 degrees +/-1.57 degrees vs. 48.43 degrees +/-1.27 degrees , mean+/-SEM, p<0.001) with significantly higher linear modulus (0.064+/-0.009 MPa vs. 0.024+/-0.004 MPa, p=0.0022) and linear stiffness (0.031+/-0.005 MPa vs. 0.018+/-0.004 N/mm, mean+/-SEM, respectively, p=0.0404). We now plan to use principles of functional tissue engineering to determine if repairs containing central regions of longer MSC-collagen constructs improve defect repair biomechanics after implantation at surgery.


Subject(s)
Mesenchymal Stem Cells/cytology , Tendon Injuries/therapy , Tendons , Tissue Engineering/methods , Animals , Biomechanical Phenomena , Cell Culture Techniques , Collagen , Female , Rabbits
7.
Tissue Eng ; 12(8): 2291-300, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16968169

ABSTRACT

The objective of this study was to determine how mechanical stimulation affects the biomechanics and histology of stem cell-collagen sponge constructs used to repair central rabbit patellar tendon defects. Autogenous tissue-engineered constructs were created for both in vitro and in vivo analyses by seeding mesenchymal stem cells from 10 adult rabbits at 0.14x10(6) cells/construct in type I collagen sponges. Half of these constructs were mechanically stimulated once every 5 min for 8 h/day to a peak strain of 4% for 2 weeks. The other half remained in an incubator without mechanical stimulation for 2 weeks. Samples allocated for in vitro testing revealed that mechanically stimulated constructs had 2.5 times the linear stiffness of nonstimulated constructs. The remaining paired constructs for in vivo studies were implanted in bilateral full-thickness, full-length defects in the central third of rabbit patellar tendons. Twelve weeks after surgery, repair tissues were assigned for biomechanical (7 pairs) and histologic (3 pairs) analyses. Maximum force, linear stiffness, maximum stress, and linear modulus for the stimulated (vs. nonstimulated) repairs averaged 70% (vs. 55%), 85% (vs. 55%), 70% (vs. 50%), and 50% (vs. 40%) of corresponding values for the normal central third of the patellar tendons. The average force-elongation curve for the mechanically stimulated repairs also matched the corresponding curve for the normal patellar tendons, up to 150% of the peak in vivo force values recorded in a previous study. Construct and repair linear stiffness and linear modulus were also positively correlated (r = 0.6 and 0.7, respectively). Histologically both repairs showed excellent cellular alignment and mild staining for decorin and collagen type V, and moderate staining for fibronectin and collagen type III. This study shows that mechanical stimulation of stem cell-collagen sponge constructs can significantly improve tendon repair biomechanics up to and well beyond the functional limits of in vivo loading.


Subject(s)
Biocompatible Materials , Collagen , Stem Cell Transplantation , Stem Cells/cytology , Tendon Injuries/surgery , Animals , Biomechanical Phenomena , Female , Rabbits , Tissue Engineering
8.
Tissue Eng ; 12(7): 1865-72, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16889516

ABSTRACT

Our group has been engineering cell-scaffold constructs to improve tendon repair by contracting mesenchymal stem cells (MSCs) in collagen gels and then evaluating their repair potential in wound sites in rabbits. Because the construct's initial conditions may influence the ultimate repair outcome, this two-part study sought to distinguish which factors most influence contraction kinetics in culture. (1)We optically determined if varying cell-to-collagen ratio significantly affected construct contraction. Temporal changes in construct area were monitored up to 168 h for 4 cell-to-collagen ratios (HK = 0.04, LK = 0.08, HM = 0.4, and LM = 0.8, where H, L = 2.6, 1.3 mg/mL collagen and K,M = 0.1, 1 million cells/mL, respectively).A mathematical model was created with terms that represent the different combinations of cell densities and collagen concentrations in order to predict the contraction kinetics as a function of time. Highly significant differences in construct areas were found among all 4 ratios after 8 h of contraction with the exception of the LK (0.08) vs. HM(0.4) conditions. This similar pattern raised the question of whether cell density or collagen concentration more influenced these events. (2) To isolate these effects, the contraction kinetics of the HM construct were compared to those of a new construct (L5K) with equivalent cell-to-collagen ratio (0.4) but half the cell density (500 K MSCs/mL) and half the collagen concentration (1.3 mg/mL). The L5K construct contracted significantly faster and more completely than the HM construct but no differently than the LM construct. These results indicate that above a threshold value of cell density, percentage reductions in collagen concentration influence contraction kinetics more than equivalent percentage increases in cell seeding density. The fact that our model successfully predicted intermediate time points of contraction suggests its utility for examining other cell and collagen densities. Controlling scaffold as well as cellular initial conditions will be critical in achieving our goal of functional tissue engineering (FTE) a successful tendon repair.


Subject(s)
Collagen , Mesenchymal Stem Cells/cytology , Models, Biological , Tissue Engineering , Animals , Bioprosthesis , Cell Count , Cells, Cultured , Elasticity , Female , Implants, Experimental , Kinetics , Rabbits , Tendon Injuries/therapy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...