Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cardiol ; 204: 195-199, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37544144

ABSTRACT

The primary goal of this study was to test the hypothesis that a hybrid intrinsic frequency-machine learning (IF-ML) approach can accurately evaluate total arterial compliance (TAC) and aortic characteristic impedance (Zao) from a single noninvasive carotid pressure waveform in both women and men with heart failure (HF). TAC and Zao are cardiovascular biomarkers with established clinical significance. TAC is lower and Zao is higher in women than in men, so women are more susceptible to the consequent deleterious effects of them. Although the principles of TAC and Zao are pertinent to a multitude of cardiovascular diseases, including HF, their routine clinical use is limited because of the requirement for simultaneous measurements of flow and pressure waveforms. For this study, the data were obtained from the Framingham Heart Study (n = 6,201, 53% women). The reference values of Zao and TAC were computed from carotid pressure and aortic flow waveforms. IF parameters of carotid pressure waveform were used in ML models. IF models were developed on n = 5,168 of randomly selected data and blindly tested the remaining data (n = 1,033). The final models were evaluated in patients with HF. Correlations between IF-ML and reference values in all HF and HF with preserved ejection fraction for TAC were 0.88 and 0.90, and for Zao were 0.82 and 0.80, respectively. The classification accuracy in all HF and HF with preserved ejection fraction for TAC were 0.9 and 0.93, and for Zao were 0.81 and 0.89, respectively. In conclusion, the IF-ML method provides an accurate estimation of TAC and Zao in all subjects with HF and in the general population.


Subject(s)
Cardiovascular Diseases , Heart Failure , Male , Humans , Female , Electric Impedance , Aorta , Longitudinal Studies
2.
PLoS One ; 17(11): e0267765, 2022.
Article in English | MEDLINE | ID: mdl-36331977

ABSTRACT

In-vitro models of the systemic circulation have gained a lot of interest for fundamental understanding of cardiovascular dynamics and for applied hemodynamic research. In this study, we introduce a physiologically accurate in-vitro hydraulic setup that models the hemodynamics of the coupled atrioventricular-aortic system. This unique experimental simulator has three major components: 1) an arterial system consisting of a human-scale artificial aorta along with the main branches, 2) an artificial left ventricle (LV) sac connected to a programmable piston-in-cylinder pump for simulating cardiac contraction and relaxation, and 3) an artificial left atrium (LA). The setup is designed in such a way that the basal LV is directly connected to the aortic root via an aortic valve, and to the LA via an artificial mitral valve. As a result, two-way hemodynamic couplings can be achieved for studying the effects that the LV, aorta, and LA have on each other. The collected pressure and flow measurements from this setup demonstrate a remarkable correspondence to clinical hemodynamics. We also investigate the physiological relevancies of isolated effects on cardiovascular hemodynamics of various major global parameters found in the circulatory system, including LV contractility, LV preload, heart rate, aortic compliance, and peripheral resistance. Subsequent control over such parameters ultimately captures physiological hemodynamic effects of LV systolic dysfunction, preload (cardiac) diseases, and afterload (arterial) diseases. The detailed design and fabrication of the proposed setup is also provided.


Subject(s)
Hemodynamics , Ventricular Dysfunction, Left , Humans , Hemodynamics/physiology , Aorta/physiology , Myocardial Contraction , Aortic Valve , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...