Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 16(8): 1269-1282, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37415334

ABSTRACT

Survival of living organisms is fully dependent on their maintenance of genome integrity, being permanently threatened by replication stress in proliferating cells. Although the plant DNA damage response (DDR) regulator SOG1 has been demonstrated to cope with replication defects, accumulating evidence points to other pathways functioning independent of SOG1. Here, we report the roles of the Arabidopsis E2FA and EF2B transcription factors, two well-characterized regulators of DNA replication, in plant response to replication stress. Through a combination of reverse genetics and chromatin immunoprecipitation approaches, we show that E2FA and E2FB share many target genes with SOG1, providing evidence for their involvement in the DDR. Analysis of double- and triple-mutant combinations revealed that E2FB, rather than E2FA, plays the most prominent role in sustaining plant growth in the presence of replication defects, either operating antagonistically or synergistically with SOG1. Conversely, SOG1 aids in overcoming the replication defects of E2FA/E2FB-deficient plants. Collectively, our data reveal a complex transcriptional network controlling the replication stress response in which E2Fs and SOG1 act as key regulatory factors.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Transcription Factors/metabolism , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics
2.
Plant Cell ; 33(8): 2662-2684, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34086963

ABSTRACT

The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.


Subject(s)
DNA Repair/genetics , Endosperm/genetics , Plant Proteins/genetics , Zea mays/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , CRISPR-Cas Systems , Cell Death/genetics , DNA Breaks, Double-Stranded , DNA Replication/genetics , Endosperm/cytology , Genomic Instability , Mutation , Plant Cells , Plant Proteins/metabolism , Plants, Genetically Modified , Seeds/cytology , Seeds/genetics , Seeds/growth & development , Zea mays/cytology , Zea mays/growth & development
3.
Plant J ; 106(5): 1197-1207, 2021 06.
Article in English | MEDLINE | ID: mdl-33989439

ABSTRACT

Safeguarding of genome integrity is a key process in all living organisms. Due to their sessile lifestyle, plants are particularly exposed to all kinds of stress conditions that could induce DNA damage. However, very few genes involved in the maintenance of genome integrity are indispensable to plants' viability. One remarkable exception is the POLQ gene, which encodes DNA polymerase theta (Pol θ), a non-replicative polymerase involved in trans-lesion synthesis during DNA replication and double-strand break (DSB) repair. The Arabidopsis tebichi (teb) mutants, deficient in Pol θ, have been reported to display severe developmental defects, leading to the conclusion that Pol θ is required for normal plant development. However, this essential role of Pol θ in plants is challenged by contradictory reports regarding the phenotypic defects of teb mutants and the recent finding that rice (Oryza sativa) null mutants develop normally. Here we show that the phenotype of teb mutants is highly variable. Taking advantage of hypomorphic mutants for the replicative DNA polymerase epsilon, which display constitutive replicative stress, we show that Pol θ allows maintenance of meristem activity when DNA replication is partially compromised. Furthermore, we found that the phenotype of Pol θ mutants can be aggravated by modifying their growth conditions, suggesting that environmental conditions impact the basal level of replicative stress and providing evidence for a link between plants' responses to adverse conditions and mechanisms involved in the maintenance of genome integrity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Polymerase II/metabolism , DNA Repair , DNA Replication , DNA, Plant/genetics , DNA-Directed DNA Polymerase/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , DNA Breaks, Double-Stranded , DNA Damage , DNA Polymerase II/genetics , DNA-Directed DNA Polymerase/genetics , Genomic Instability , Genotype , Meristem/genetics , Meristem/physiology , Models, Biological , Mutation , Phenotype , Plant Roots/genetics , Plant Roots/physiology , Stress, Physiological , DNA Polymerase theta
5.
Front Plant Sci ; 10: 653, 2019.
Article in English | MEDLINE | ID: mdl-31164899

ABSTRACT

Maintenance of genome integrity is a key issue for all living organisms. Cells are constantly exposed to DNA damage due to replication or transcription, cellular metabolic activities leading to the production of Reactive Oxygen Species (ROS) or even exposure to DNA damaging agents such as UV light. However, genomes remain extremely stable, thanks to the permanent repair of DNA lesions. One key mechanism contributing to genome stability is the DNA Damage Response (DDR) that activates DNA repair pathways, and in the case of proliferating cells, stops cell division until DNA repair is complete. The signaling mechanisms of the DDR are quite well conserved between organisms including in plants where they have been investigated into detail over the past 20 years. In this review we summarize the acquired knowledge and recent advances regarding the DDR control of cell cycle progression. Studying the plant DDR is particularly interesting because of their mode of development and lifestyle. Indeed, plants develop largely post-embryonically, and form new organs through the activity of meristems in which cells retain the ability to proliferate. In addition, they are sessile organisms that are permanently exposed to adverse conditions that could potentially induce DNA damage in all cell types including meristems. In the second part of the review we discuss the recent findings connecting the plant DDR to responses to biotic and abiotic stresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...