Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 17053, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26592564

ABSTRACT

The article presents, using Bi doped ZnO, an example of a heavy ion doped oxide semiconductor, highlighting a novel p-symmetry interaction of the electronic states to stabilize ferromagnetism. The study includes both ab initio theory and experiments, which yield clear evidence for above room temperature ferromagnetism. ZnBi(x)O(1-x) thin films are grown using the pulsed laser deposition technique. The room temperature ferromagnetism finds its origin in the holes introduced by the Bi doping and the p-p coupling between Bi and the host atoms. A sizeable magnetic moment is measured by means of x-ray magnetic circular dichroism at the O K-edge, probing directly the spin polarization of the O(2p) states. This result is in agreement with the theoretical predictions and inductive magnetometry measurements. Ab initio calculations of the electronic and magnetic structure of ZnBi(x)O(1-x) at various doping levels allow to trace the origin of the ferromagnetic character of this material. It appears, that the spin-orbit energy of the heavy ion Bi stabilizes the ferromagnetic phase. Thus, ZnBi(x)O(1-x) doped with a heavy non-ferromagnetic element, such as Bi, is a credible example of a candidate material for a new class of compounds for spintronics applications, based on the spin polarization of the p states.

2.
Phys Chem Chem Phys ; 15(40): 17150-7, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24013462

ABSTRACT

The cationic-anionic mediated charge compensation effect was studied in the layered perovskite La2Ti2O7 for the visible light photocatalysis. Our screened hybrid density functional study shows that the electronic structure of La2Ti2O7 can be tuned by the cationic (V, Nb, Ta)/anionic (N) mono- and co-doping. Such mono-doping creates impurity states in the band gap which helps the electron-hole recombination. But if the charge compensation is made by the cationic-anionic mediated co-doping then such impurity states can be removed and can be a promising strategy for visible light photocatalysis. The absolute band edge position of the doped La2Ti2O7 has been aligned with respect to the water oxidation/reduction potential. The calculated defect formation energy shows the stability of the co-doping system is improved due to the coulomb interactions and charge compensations effect.

3.
ACS Appl Mater Interfaces ; 5(17): 8516-22, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23915321

ABSTRACT

Fixation of SO2 molecules on anatase TiO2 surfaces with defects have been investigated by first-principles density functional theory (DFT) calculations and in situ Fourier transform infrared (FTIR) surface spectroscopy on porous TiO2 films. Intrinsic oxygen-vacancy defects, which are formed on TiO2(001) and TiO2(101) surfaces by ultraviolet (UV) light irradiation and at elevated temperatures, are found to be most effective in anchoring the SO2 gas molecules to the TiO2 surfaces. Both TiO2(101) and TiO2(001) surfaces with oxygen vacancies are found to exhibit higher SO2 adsorption energies in the DFT calculations. The adsorption mechanism of SO2 is explained on the basis of electronic structure, charge transfer between the molecule and the surface, and the oxidation state of the adsorbed molecule. The theoretical findings are corroborated by FTIR experiments. Moreover, the (001) surface with oxygen vacancies is found to bind SO2 gas molecules more strongly, as compared to the (101) surface. Higher concentration of oxygen vacancies on the TiO2 surfaces is found to significantly increase the adsorption energy. The results shed new insight into the sensing properties of TiO2-based gas sensors.

4.
ACS Appl Mater Interfaces ; 4(10): 5691-7, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23027802

ABSTRACT

Density functional theory (DFT) calculations have been employed to explore the gas-sensing mechanisms of NiO (100) surface on the basis of energetic and electronic properties. We have calculated the adsorption energies of NO(2), H(2)S, and NH(3) molecules on NiO (100) surface using GGA+U method. The calculated results suggest that the interaction of NO(2) molecule with NiO surface becomes stronger and contributes more extra peaks within the band gap as the coverage increases. The band gap of H(2)S-adsorbed systems decrease with the increase in coverage up to 0.5 ML and the band gap does not change at 1 ML because H(2)S molecules are repelled from the surface. In case of NH(3) molecular adsorption, the adsorption energy has been increased with the increase in coverage and the band gap is directly related to the adsorption energy. Charge transfer mechanism between the gas molecule and the NiO surface has been illustrated by the Bader analysis and plotting isosurface charge distribution. It is also found that that work function of the surfaces shows different behavior with different adsorbed gases and their coverage. The work function of NO(2) gas adsorption has a hill-shaped behavior, whereas H(2)S adsorption has a valley-shaped behavior. The work function of NH(3) adsorption decreases with the increase in coverage. On the basis of our calculations, we can have a better understanding of the gas-sensing mechanism of NiO (100) surface toward NO(2), H(2)S, and NH(3) gases.

5.
Nanotechnology ; 23(38): 385704, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22947918

ABSTRACT

From first-principles calculations, we predict a planar stable graphene allotrope composed of a periodic array of tetragonal and octagonal (4, 8) carbon rings. The stability of this sheet is predicted from the room-temperature molecular dynamics study and the electronic structure is studied using state-of-the-art calculations such as the hybrid density functional and the GW approach. Moreover, the mechanical properties of (4, 8) carbon sheet are evaluated from the Young's modulus and intrinsic strength calculations. We find this is a stable planar semiconducting carbon sheet with a bandgap between 0.43 and 1.01 eV and whose mechanical properties are as good as graphene's.


Subject(s)
Graphite/chemistry , Models, Chemical , Models, Molecular , Semiconductors , Computer Simulation , Elastic Modulus , Electric Conductivity , Hardness , Macromolecular Substances/chemistry , Molecular Conformation , Particle Size , Surface Properties
6.
Phys Chem Chem Phys ; 14(14): 4891-7, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22389023

ABSTRACT

The band gap reduction and effective utilization of visible solar light are possible by introducing the anionic hole-hole mediated coupling in Sr(2)Nb(2)O(7). By using the first principles calculations, we have investigated the mono- and co-anionic doping (S, N and C) in layered perovskite Sr(2)Nb(2)O(7) for the visible-light photocatalysis. Our electronic structure and optical absorption study shows that the mono- (N and S) and co-anionic doped (N-N and C-S) Sr(2)Nb(2)O(7) systems are promising materials for the visible light photocatalysis. The calculated binding energies show that if the hole-hole mediated coupling could be introduced, the co-doped systems would be more stable than their respective mono-doped systems. Optical absorption curves indicate that doping S, (N-N) and (C-S) in Sr(2)Nb(2)O(7) can harvest a longer wavelength of the visible light spectrum as compared to the pure Sr(2)Nb(2)O(7) for efficient photocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...