Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 264: 104368, 2024 May.
Article in English | MEDLINE | ID: mdl-38776561

ABSTRACT

In this study, twenty-two water samples were collected from boreholes (BH), and streams to evaluate drinking water quality, its distribution, identification of contamination sources and apportionment for Moti village, northern Pakistan. An atomic absorption spectrophotometer (AAS) is utilized to determine the level of heavy metals in water such as arsenic (As), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), manganese (Mn), and ferrous (Fe). Groundwater chemistry and its quantitative driving factors were further explored using multivariate statistical methods, Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) models. Finally, a total of eight electrical resistivity tomographs (ERTs) were acquired across i) the highly contaminated streams; ii) the villages far away from contaminated streams; and iii) across the freshwater stream. In the Moti village, the mean levels (mg/l) of heavy metals in water samples were 7.2465 (As), 0.4971 (Zn), 0.5056 (Pb), 0.0422 (Cu), 0.0279 (Cd), 0.1579 (Mn), and 0.9253 (Fe) that exceeded the permissible limit for drinking water (such as 0.010 for As and Pb, 3.0 for Zn, 0.003 for Cd and 0.3 for Fe) established by the World Health Organization (WHO, 2008). The average entropy weighted water quality index (EWQI) of 200, heavy metal pollution index (HPI) of 175, heavy metal evaluation index (HEI) of 1.6 values reveal inferior water quality in the study area. Human health risk assessment, consisting of hazard quotient (HQ) and hazard index (HI), exceeded the risk threshold (>1),indicating prevention of groundwater usage. Results obtained from the PCA and PMF models indicated anthropogenic sources (i.e. industrial and solid waste) responsible for the high concentration of heavy metals in the surface and groundwater. The ERTs imaged the subsurface down to about 40 m depths and show the least resistivity values (<11 Ωm) for subsurface layers that are highly contaminated. However, the ERTs revealed relatively high resistivity values for subsurface layers containing fresh or less contaminated water. Filtering and continuous monitoring of the quality of drinking water in the village are highly recommended.


Subject(s)
Environmental Monitoring , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Water Quality , Pakistan , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Groundwater/chemistry , Groundwater/analysis , Entropy , Tomography/methods , Principal Component Analysis , Drinking Water/chemistry , Drinking Water/analysis
2.
Polymers (Basel) ; 14(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35406236

ABSTRACT

Antibacterial and cyto-compatible tricomponent composite electrospun nanofibers comprised of polyvinyl alcohol (PVA), copper II oxide nanoparticles (CuONPs), and Momordica charantia (bitter gourd, MC) extract were examined for their potential application as an effective wound dressing. Metallic nanoparticles have a wide range of applications in biomedical engineering because of their excellent antibacterial properties; however, metallic NPs have some toxic effects as well. The green synthesis of nanoparticles is undergoing development with the goal of avoiding toxicity. The aim of adding Momordica charantia extract was to reduce the toxic effects of copper oxide nanoparticles as well as to impart antioxidant properties to electrospun nanofibers. Weight ratios of PVA and MC extract were kept constant while the concentration of copper oxide was optimized to obtain good antibacterial properties with reduced toxicity. Samples were characterized for their morphological properties, chemical interactions, crystalline structures, elemental analyses, antibacterial activity, cell adhesion, and toxicity. All samples were found to have uniform morphology without any bead formation, while an increase in diameters was observed as the CuO concentration was increased in nanofibers. All samples exhibited antibacterial properties; however, the sample with CuO concentration of 0.6% exhibited better antibacterial activity. It was also observed that nanofibrous mats exhibited excellent cytocompatibility with fibroblast (NIH3T3) cells. The mechanical properties of nanofibers were slightly improved due to the addition of nanoparticles. By considering the excellent results of nanofibrous mats, they can therefore be recommended for wound dressing applications.

3.
RSC Adv ; 10(26): 15274-15281, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-35495434

ABSTRACT

Lithium-rich layered oxide materials are considered as potential cathode materials for future high-performance lithium-ion batteries (LIBs) owing to their high operating voltage and relatively high specific capacity. However, perceptible issues such as poor rate performance, poor capacity retention, and voltage degradation during cycling need to be improved before the successful commercialization of the material. In this report, zirconia coated Li1.2Ni0.16Mn0.56Co0.08O2 (NMC) (where ZrO2 = 1.0, 1.5 and 2.0 wt%) materials are synthesized using a sol-gel assisted ball milling approach. A comparison of structural, morphological and electrochemical properties is examined to elucidate the promising role of ZrO2 coating on the performance of the NMC cathode. A uniform and homogeneous ZrO2 coating is observed on the surface of NMC particles as evident by TEM elemental mapping images. The ZrO2 coated NMCs exhibit significantly improved electrochemical performance at a higher C-rate as compared to pristine material. 1.5% ZrO2 coated NMC demonstrates better cycling stability (95% capacity retention) than pristine NMC (77% capacity retention) after 50 cycles. All ZrO2 coated NMC materials demonstrated improved thermal stability compared to pristine material. The difference in onset temperature of 2 wt% ZrO2 coated and pristine NMC is 20 °C. The improved electrochemical performance of ZrO2 coated NMC can be attributed to the stabilization of its surface structure due to the presence of ZrO2.

4.
Sci Rep ; 8(1): 14146, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30237430

ABSTRACT

In this study, electromechanical characteristics of (1-x) Bi0.5Na0.5TiO3-xSrTiO3 (ST26, x = 0.26)/(1-y) Bi0.5Na0.5TiO3-ySrTiO3 (ST10, y = 0.1) (matrix/seed) composites were studied. The ST26 (high relaxor phase) and ST10 (a relaxor ferroelectric (RF), high ferroelectric phase) composite with large (r-ST26-ST10) and small (t-ST26-ST10) grains exhibited frequency-related dielectric properties and large strain response at a low triggering electric field (an incipient piezoelectricity). It is ascribed to a matrix-seed effect originating from the inhomogeneous composition due to the presence of two phases. The r-ST26-ST10 composite sintered at 4 h, prominent material, showed a high normalized dynamic strain (d33*) of ~700 pm/V (large grains) with stable frequency dependence properties at a low field of 40 kV/cm. The properties of the r-ST26-ST10 composite exhibit less decay with frequency-related polarization and strain compared to those of t-ST26-ST10 composite. The increase in soaking time promotes the diffusion and homogenization of the microstructure in composites, leading to changes in the core-shell structure in the solid solution. The polarization and strain of the ST26-ST10 composites with the frequency are linked to the stability of the internal random fields created by non-ergodic relaxor phase of seed and the amount of phase change in the ergodic relaxor matrix.

5.
RSC Adv ; 8(57): 32985-32991, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35547710

ABSTRACT

This research work focuses on the synthesis and performance evaluation of NaFe x Cr1-X (SO4)2 (X = 0, 0.8 and 1.0) cathode materials in sodium ion batteries (SIBs). The novel materials having a primary particle size of around 100-200 nm were synthesized through a sol-gel process by reacting stoichiometric amounts of the precursor materials. The structural analysis confirms the formation of crystalline, phase pure materials that adopt a monoclinic crystal structure. Thermal analysis indicates the superior thermal stability of NaFe0.8Cr0.2(SO4)2 when compared to NaFe(SO4)2 and NaCr(SO4)2. Galvanostatic charge/discharge analysis indicates that the intercalation/de-intercalation of a sodium ion (Na+) into/from NaFe(SO4)2 ensues at about 3.2 V due to the Fe2+/Fe3+ active redox couple. Moreover, ex situ XRD analysis confirms that the insertion/de-insertion of sodium into/from the host structure during charging/discharging is accompanied by a reversible single-phase reaction rather than a biphasic reaction. A similar sodium intercalation/de-intercalation mechanism has been noticed in NaFe0.8Cr0.2(SO4)2which has not been reported earlier. The galvanostatic measurements and X-ray photoelectron spectroscopy (XPS) analysis confirm that the Cr2+/Cr3+ redox couple is inactive in NaFe x Cr1-X (SO4)2 (X = 0, 0.8) and thus does not contribute to capacity augmentation. However, suitable carbon coating may lead to activation of the Cr2+/Cr3+ redox couple in these inactive materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...