Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 44(10): 1084-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22941192

ABSTRACT

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


Subject(s)
Chromosome Mapping , Gene Expression Regulation , Transcription, Genetic , Adult , Aged , Aged, 80 and over , Female , Gene-Environment Interaction , Genetic Linkage , Humans , Lymphocytes/metabolism , Middle Aged , Models, Genetic , Organ Specificity , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Skin/metabolism , Subcutaneous Fat/metabolism
2.
PLoS Genet ; 8(4): e1002639, 2012.
Article in English | MEDLINE | ID: mdl-22532805

ABSTRACT

The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs) after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for the transferability of complex trait variants across populations.


Subject(s)
Gene Expression Regulation , Quantitative Trait Loci/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Initiation Site , Asian People/genetics , Black People/genetics , Cell Line , Genetics, Population , Genome, Human , HapMap Project , Humans , Polymorphism, Single Nucleotide , White People/genetics
3.
Nature ; 464(7289): 773-7, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20220756

ABSTRACT

Gene expression is an important phenotype that informs about genetic and environmental effects on cellular state. Many studies have previously identified genetic variants for gene expression phenotypes using custom and commercially available microarrays. Second generation sequencing technologies are now providing unprecedented access to the fine structure of the transcriptome. We have sequenced the mRNA fraction of the transcriptome in 60 extended HapMap individuals of European descent and have combined these data with genetic variants from the HapMap3 project. We have quantified exon abundance based on read depth and have also developed methods to quantify whole transcript abundance. We have found that approximately 10 million reads of sequencing can provide access to the same dynamic range as arrays with better quantification of alternative and highly abundant transcripts. Correlation with SNPs (small nucleotide polymorphisms) leads to a larger discovery of eQTLs (expression quantitative trait loci) than with arrays. We also detect a substantial number of variants that influence the structure of mature transcripts indicating variants responsible for alternative splicing. Finally, measures of allele-specific expression allowed the identification of rare eQTLs and allelic differences in transcript structure. This analysis shows that high throughput sequencing technologies reveal new properties of genetic effects on the transcriptome and allow the exploration of genetic effects in cellular processes.


Subject(s)
Gene Expression Profiling/methods , RNA, Messenger/analysis , RNA, Messenger/genetics , Sequence Analysis, DNA/methods , White People/genetics , Alleles , Alternative Splicing/genetics , Exons/genetics , Haplotypes/genetics , Homozygote , Humans , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
4.
Science ; 325(5945): 1246-50, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19644074

ABSTRACT

Studies correlating genetic variation to gene expression facilitate the interpretation of common human phenotypes and disease. As functional variants may be operating in a tissue-dependent manner, we performed gene expression profiling and association with genetic variants (single-nucleotide polymorphisms) on three cell types of 75 individuals. We detected cell type-specific genetic effects, with 69 to 80% of regulatory variants operating in a cell type-specific manner, and identified multiple expressive quantitative trait loci (eQTLs) per gene, unique or shared among cell types and positively correlated with the number of transcripts per gene. Cell type-specific eQTLs were found at larger distances from genes and at lower effect size, similar to known enhancers. These data suggest that the complete regulatory variant repertoire can only be uncovered in the context of cell-type specificity.


Subject(s)
Gene Expression Regulation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Regulatory Elements, Transcriptional , Allelic Imbalance , B-Lymphocytes , Cell Line , Enhancer Elements, Genetic , Fibroblasts , Gene Expression Profiling , Gene Frequency , Genotype , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Statistics, Nonparametric , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...