Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 622(7982): 402-409, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758951

ABSTRACT

Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Endoribonucleases , Piwi-Interacting RNA , Animals , Argonaute Proteins/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , DNA Transposable Elements/genetics , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Holoenzymes/chemistry , Holoenzymes/metabolism , Piwi-Interacting RNA/chemistry , Piwi-Interacting RNA/genetics , Piwi-Interacting RNA/metabolism , RNA Cap Analogs/chemistry , RNA Cap Analogs/metabolism
2.
iScience ; 26(6): 106778, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37250769

ABSTRACT

Genome maintenance is orchestrated by a highly regulated DNA damage response with specific DNA repair pathways. Here, we investigate the phylogenetic diversity in the recognition and repair of three well-established DNA lesions, primarily repaired by base excision repair (BER) and ribonucleotide excision repair (RER): (1) 8-oxoguanine, (2) abasic site, and (3) incorporated ribonucleotide in DNA in 11 species: Escherichia coli, Bacillus subtilis, Halobacterium salinarum, Trypanosoma brucei, Tetrahymena thermophila, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Zea mays. Using quantitative mass spectrometry, we identified 337 binding proteins across these species. Of these proteins, 99 were previously characterized to be involved in DNA repair. Through orthology, network, and domain analysis, we linked 44 previously unconnected proteins to DNA repair. Our study presents a resource for future study of the crosstalk and evolutionary conservation of DNA damage repair across all domains of life.

3.
Nucleic Acids Res ; 51(10): 5162-5176, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37070168

ABSTRACT

RNA-binding proteins (RBPs) form highly diverse and dynamic ribonucleoprotein complexes, whose functions determine the molecular fate of the bound RNA. In the model organism Sacchromyces cerevisiae, the number of proteins identified as RBPs has greatly increased over the last decade. However, the cellular function of most of these novel RBPs remains largely unexplored. We used mass spectrometry-based quantitative proteomics to systematically identify protein-protein interactions (PPIs) and RNA-dependent interactions (RDIs) to create a novel dataset for 40 RBPs that are associated with the mRNA life cycle. Domain, functional and pathway enrichment analyses revealed an over-representation of RNA functionalities among the enriched interactors. Using our extensive PPI and RDI networks, we revealed putative new members of RNA-associated pathways, and highlighted potential new roles for several RBPs. Our RBP interactome resource is available through an online interactive platform as a community tool to guide further in-depth functional studies and RBP network analysis (https://www.butterlab.org/RINE).


Subject(s)
RNA-Binding Proteins , RNA , Saccharomyces cerevisiae , Proteomics , RNA/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Protein Interaction Mapping , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
4.
Nat Commun ; 12(1): 2668, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976151

ABSTRACT

Telomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Multiprotein Complexes/metabolism , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Animals , Animals, Genetically Modified , Base Sequence , Binding Sites/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/classification , Caenorhabditis elegans Proteins/genetics , DNA/genetics , DNA-Binding Proteins/genetics , Germ Cells/metabolism , Microscopy, Fluorescence/methods , Multiprotein Complexes/genetics , Mutation , Phylogeny , Protein Binding , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/metabolism , Telomere/genetics , Telomere-Binding Proteins/classification , Telomere-Binding Proteins/genetics
5.
EMBO J ; 40(5): e105565, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33533030

ABSTRACT

PIWI-interacting RNAs (piRNAs) are genome-encoded small RNAs that regulate germ cell development and maintain germline integrity in many animals. Mature piRNAs engage Piwi Argonaute proteins to silence complementary transcripts, including transposable elements and endogenous genes. piRNA biogenesis mechanisms are diverse and remain poorly understood. Here, we identify the RNA polymerase II (RNA Pol II) core subunit RPB-9 as required for piRNA-mediated silencing in the nematode Caenorhabditis elegans. We show that rpb-9 initiates heritable piRNA-mediated gene silencing at two DNA transposon families and at a subset of somatic genes in the germline. We provide genetic and biochemical evidence that RPB-9 is required for piRNA biogenesis by recruiting the Integrator complex at piRNA genes, hence promoting transcriptional termination. We conclude that, as a part of its rapid evolution, the piRNA pathway has co-opted an ancient machinery for high-fidelity transcription.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Gene Expression Regulation , Gene Silencing , RNA Polymerase II/metabolism , RNA, Small Interfering/metabolism , Transcription, Genetic , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Germ Cells , Promoter Regions, Genetic , Protein Subunits , RNA Polymerase II/genetics , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...