Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 11(48): 13052-13059, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-34123241

ABSTRACT

An anticancer, entirely carbohydrate conjugate, Globo H-polysaccharide A1 (Globo H-PS A1), was chemically prepared and immunologically evaluated in C57BL/6 mice. Tumor associated carbohydrate antigen Globo H hexasaccharide was synthesized in an overall 7.8% yield employing a convergent [3 + 3] strategy that revealed an anomeric aminooxy group used for conjugation to oxidized PS A1 via an oxime linkage. Globo H-PS A1, formulated with adjuvants monophosphoryl lipid A and TiterMax® Gold. After immunization an antigen specific immune response was observed in ELISA with anti-Globo H IgG/IgM antibodies. Specificity of the corresponding antibodies was determined by FACS showing cell surface binding to Globo H-positive cancer cell lines MCF-7 and OVCAR-5. The anti-Globo H antibodies also exhibited complement-dependent cellular cytotoxicity against MCF-7 and OVCAR-5 cells.

2.
Res Pract Thromb Haemost ; 3(4): 704-712, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31624790

ABSTRACT

BACKGROUND: Platelets are widely recognized for their role in maintaining hemostasis. Recently, platelets have become appreciated for their varying roles in immunity, neuroprotection, and other physiological processes. While there are currently excellent methods to transiently deplete platelets and models of thrombocytopenia, studying the roles of platelets in chronic processes can be challenging. OBJECTIVE: Phenotypic characterization of the PF4-DTR mouse model of conditional platelet depletion compared to antibody depletion. METHODS: We describe the ability of the PF4-DTR mouse to maintain chronic platelet depletion, along with examining the bleeding phenotype compared to antibody-mediated platelet depletion. RESULTS: Systemic administration of diphtheria toxin resulted in >99% platelet depletion that can be maintained for >2 weeks. When compared to an antibody depletion model, PF4-DTR mice showed similar phenotypes when challenged with tail bleed and saphenous vein measurements of hemostasis. Mice depleted with diphtheria toxin were also able to undergo adoptive transfer of platelets. If the frequency and amount of diphtheria toxin is reduced, mice can be maintained at >40% depletion for >28 days, showing that this model is tunable. CONCLUSIONS: When compared to the gold standard of antibody-mediated depletion, PF4-DTR mice showed similar phenotypes and should be considered an important tool for examining the impact of thrombocytopenia over longer periods of time.

3.
Infect Immun ; 86(9)2018 09.
Article in English | MEDLINE | ID: mdl-29914928

ABSTRACT

Staphylococcus aureus is a major human pathogen that can cause mild to severe life-threatening infections in many tissues and organs. Platelets are known to participate in protection against S. aureus by direct killing and by enhancing the activities of neutrophils and macrophages in clearing S. aureus infection. Platelets have also been shown to induce monocyte differentiation into dendritic cells and to enhance activation of dendritic cells. Therefore, in the present study, we explored the role of platelets in enhancing bone marrow-derived dendritic cell (BMDC) function against S. aureus We observed a significant increase in dendritic cell phagocytosis and intracellular killing of a methicillin-resistant Staphylococcus aureus (MRSA) strain (USA300) by thrombin-activated platelets or their releasates. Enhancement of bacterial uptake and killing by DCs is mediated by platelet-derived CD40L. Coculture of USA300 and BMDCs in the presence of thrombin-activated platelet releasates invokes upregulation of the maturation marker CD80 on DCs and enhanced production of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 12 (IL-12), and IL-6. Overall, these observations support our hypothesis that platelets play a critical role in the host defense against S. aureus infection. Platelets stimulate DCs, leading to direct killing of S. aureus and enhanced DC maturation, potentially leading to adaptive immune responses against S. aureus.


Subject(s)
Blood Platelets/immunology , CD40 Ligand/immunology , Cytotoxicity, Immunologic/physiology , Dendritic Cells/immunology , Platelet Activation/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , B7-1 Antigen/metabolism , Cytokines/metabolism , Humans , Macrophage Activation/physiology , Macrophages/immunology , Methicillin-Resistant Staphylococcus aureus/immunology , Phagocytosis/immunology
4.
J Org Chem ; 81(11): 4475-84, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27149417

ABSTRACT

A highly efficient and stereocontrolled synthesis of an aminooxy derivative of the tetrasaccharide repeating unit of a rhamnose-rich polysaccharide isolated from the cell envelop of bovine mastitis Streptococcus dysgalactiae 2023 is reported for the first time. The synthesis was accomplished utilizing a stereoselective and convergent [2 + 2] glycosylation strategy inclusive of a disaccharide Schmidt donor and an inclusive rhamnose disaccharide acceptor. The synthetic aminooxy tetrasaccharide was conjugated to T-cell stimulating immunogen PS A1 from Bacteroides fragilis ATCC 25285/NCTC 9343 via a physiologically stable oxime linkage to furnish the first semisynthetic bacterial-based immunogen construct targeting S. dysgalactiae 2023. The synthetic tetrasaccharide was assembled in 19 steps with a ∼5.0% overall yield.


Subject(s)
Polysaccharides/chemistry , Polysaccharides/immunology , Streptococcus/chemistry , Streptococcus/immunology , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology , Animals , Bacteroides fragilis/immunology , Carbohydrate Sequence , Cattle , Female , Glycosylation , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Oximes/chemistry , Stereoisomerism , T-Lymphocytes/immunology
5.
Vaccines (Basel) ; 4(2)2016 May 20.
Article in English | MEDLINE | ID: mdl-27213458

ABSTRACT

Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs). Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs), isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses.

6.
Org Lett ; 17(11): 2582-5, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25988425

ABSTRACT

A selective glycosylation strategy enabling access to all stereochemical combinations of tumor associated Thomsen-nouveau (Tn) antigen, D-GalNAc-O-Ser/Thr, has been developed. The key component for selectivity is the phthalimide-protected D- or L-amino acid acceptors which allow access to α- or ß-anomers in excellent yields (72-96%) and selectivity (∼100%) when appropriate C-2 substitution is installed. The glycoamino acid intermediates were divergently converted to Tn-based carboxylates or to hydrazides by tandem Pd-C debenzylation followed by treatment with hydrazine hydrate or hydrazine hydrate treatment alone.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/chemistry , Biological Products/chemical synthesis , Hydrazines/chemical synthesis , Biological Products/chemistry , Glycosylation , Hydrazines/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...