Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38334671

ABSTRACT

Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells. Super-resolution techniques have effectively addressed this constraint by enabling the observation of subcellular components on the nanoscale. Nevertheless, it is crucial to acknowledge that these methods often need the use of fixed samples. This also raises the question of how closely a static image represents the real intracellular dynamic system. High-speed atomic force microscopy (HS-AFM) is a unique technique used in the field of dynamic structural biology, enabling the study of individual molecules in motion close to their native states. Establishing a reliable and repeatable technique for imaging mammalian tissue at the nanoscale using HS-AFM remains challenging due to inadequate sample preparation. This study presents the rapid strainer microfiltration (RSM) protocol for directly preparing high-quality nuclei from the mouse brain. Subsequently, we promptly utilize HS-AFM real-time imaging and cinematography approaches to record the spatiotemporal of nuclear pore nano-dynamics from the mouse brain.


Subject(s)
Proteins , Single Molecule Imaging , Animals , Mice , Microscopy, Atomic Force/methods , Proteins/chemistry , Cell Nucleus , Brain/diagnostic imaging , Mammals
2.
Cell Chem Biol ; 31(4): 792-804.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-37924814

ABSTRACT

Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.

3.
J Phys Chem Lett ; 14(38): 8385-8396, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37707320

ABSTRACT

Open reading frame 6 (ORF6), the accessory protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that suppresses host type-I interferon signaling, possesses amyloidogenic sequences. ORF6 amyloidogenic peptides self-assemble to produce cytotoxic amyloid fibrils. Currently, the molecular properties of the ORF6 remain elusive. Here, we investigate the structural dynamics of the full-length ORF6 protein in a near-physiological environment using high-speed atomic force microscopy. ORF6 oligomers were ellipsoidal and readily assembled into ORF6 protofilaments in either a circular or a linear pattern. The formation of ORF6 protofilaments was enhanced at higher temperatures or on a lipid substrate. ORF6 filaments were sensitive to aliphatic alcohols, urea, and SDS, indicating that the filaments were predominantly maintained by hydrophobic interactions. In summary, ORF6 self-assembly could be necessary to sequester host factors and causes collateral damage to cells via amyloid aggregates. Nanoscopic imaging unveiled the innate molecular behavior of ORF6 and provides insight into drug repurposing to treat amyloid-related coronavirus disease 2019 complications.


Subject(s)
Open Reading Frames , SARS-CoV-2 , Viral Proteins , Amyloid , Peptides , SARS-CoV-2/genetics , Signal Transduction , Viral Proteins/genetics
4.
Nano Lett ; 23(2): 619-628, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36641798

ABSTRACT

Anti-spike neutralizing antibodies (S NAbs) have been developed for prevention and treatment against COVID-19. The nanoscopic characterization of the dynamic interaction between spike proteins and S NAbs remains difficult. By using high-speed atomic force microscopy (HS-AFM), we elucidate the molecular property of an S NAb and its interaction with spike proteins. The S NAb appeared as monomers with a Y conformation at low density and formed hexameric oligomers at high density. The dynamic S NAb-spike protein interaction at RBD induces neither RBD opening nor S1 subunit shedding. Furthermore, the interaction was stable at endosomal pH. These findings indicated that the S NAb could have a negligible risk of antibody-dependent enhancement. Dynamic movement of spike proteins on small extracellular vesicles (S sEV) resembled that on SARS-CoV-2. The sensitivity of variant S sEVs to S NAb could be evaluated using HS-AFM. Altogether, we demonstrate a nanoscopic assessment platform for evaluating the binding property of S NAbs.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Antibodies, Neutralizing
5.
J Extracell Vesicles ; 11(11): e12275, 2022 11.
Article in English | MEDLINE | ID: mdl-36317784

ABSTRACT

Small extracellular vesicles (sEVs) play a crucial role in local and distant cell communication. The intrinsic properties of sEVs make them compatible biomaterials for drug delivery, vaccines, and theranostic nanoparticles. Although sEV proteomics have been robustly studied, a direct instantaneous assessment of sEV structure dynamics remains difficult. Here, we use the high-speed atomic force microscopy (HS-AFM) to evaluate nanotopological changes of sEVs with respect to different physicochemical stresses including thermal stress, pH, and osmotic stress. The sEV structure is severely altered at high-temperature, high-pH, or hypertonic conditions. Surprisingly, the spherical shape of the sEVs is maintained in acidic or hypotonic environments. Real-time observation by HS-AFM imaging reveals an irreversible structural change in the sEVs during transition of pH or osmolarity. HS-AFM imaging provides both qualitative and quantitative data at high spatiotemporal resolution (nanoscopic and millisecond levels). In summary, our study demonstrates the feasibility of HS-AFM for structural characterization and assessment of nanoparticles.


Subject(s)
Extracellular Vesicles , Microscopy, Atomic Force/methods
6.
J Extracell Vesicles ; 10(14): e12170, 2021 12.
Article in English | MEDLINE | ID: mdl-34874124

ABSTRACT

SARS-CoV-2 spike protein (S) binds to human angiotensin-converting enzyme 2 (hACE2), allowing virus to dock on cell membrane follow by viral entry. Here, we use high-speed atomic force microscopy (HS-AFM) for real-time visualization of S, and its interaction with hACE2 and small extracellular vesicles (sEVs). Results show conformational heterogeneity of S, flexibility of S stalk and receptor-binding domain (RBD), and pH/temperature-induced conformational change of S. S in an S-ACE2 complex appears as an all-RBD up conformation. The complex acquires a distinct topology upon acidification. S and S2 subunit demonstrate different membrane docking mechanisms on sEVs. S-hACE2 interaction facilitates S to dock on sEVs, implying the feasibility of ACE2-expressing sEVs for viral neutralization. In contrary, S2 subunit docks on lipid layer and enters sEV using its fusion peptide, mimicking the viral entry scenario. Altogether, our study provides a platform that is suitable for real-time visualization of various entry inhibitors, neutralizing antibodies, and sEV-based decoy in blocking viral entry. Teaser: Comprehensive observation of SARS-CoV-2 spike and its interaction with receptor ACE2 and sEV-based decoy in real time using HS-AFM.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Extracellular Vesicles/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Humans , Hydrogen-Ion Concentration , Lipid Bilayers/metabolism , Microscopy, Atomic Force , Protein Binding , Protein Conformation , Protein Domains , Protein Subunits , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Temperature , Virus Internalization
7.
J Phys Chem Lett ; 12(15): 3837-3846, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33852305

ABSTRACT

DNA-histone interaction is always perturbed by epigenetic regulators to regulate gene expression. Direct visualization of this interaction is yet to be achieved. By using high-speed atomic force microscopy (HS-AFM), we have observed the dynamic DNA-histone H2A interaction. HS-AFM movies demonstrate the globular core and disordered tail of H2A. DNA-H2A formed the classic "beads-on-string" conformation on poly-l-lysine (PLL) and lipid substrates. Notably, a short-linearized double-stranded DNA (dsDNA), resembling an inchworm, wrapped around a single H2A protein only observed on the lipid substrate. Such a phenomenon does not occur for plasmid DNA or linearized long dsDNA on the same substrate. Strong adsorption of PLL substrate resulted in poor dynamic DNA-H2A interaction. Nonetheless, short-linearized dsDNA-H2A formed stable wrapping with a "diamond ring" topology on the PLL substrate. Reversible liquid-liquid phase separation (LLPS) of the DNA-H2A aggregate was visualized by manipulating salt concentrations. Collectively, our study suggest that HS-AFM is feasible for investigating epigenetically modified DNA-histone interactions.


Subject(s)
DNA/chemistry , Histone Chaperones/chemistry , Histones/chemistry , Microscopy, Atomic Force
SELECTION OF CITATIONS
SEARCH DETAIL
...