Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835243

ABSTRACT

The pungent component of sansho (Japanese pepper, Zanthoxylum pipritum) is sanshool, which is easily oxidized and decomposed. We have previously reported several sanshool stabilizers, such as α-tocopherol (α-Toc). Sansho pericarp powder treated with middle-chain triglycerides (MCTs) can be used to obtain extracts containing hydroxy-α-sanshool (HαS). Although HαS is stabilized when α-Toc is added to the MCT extracts, the loss of HαS is accelerated when it is mixed with a powder such as lactose. The separation of α-Toc from sanshools was thought to inevitably lead to their oxidation. Therefore, using sansho pericarp MCT extracts with or without α-Toc, oil/water (o/w) emulsions were prepared by adding a surfactant, glycerin, and water to these extracts. In both emulsions, HαS was stable in accelerated tests at 50 °C. However, when lactose powder was added to the emulsions and an accelerated test was performed, HαS in the emulsion containing α-Toc was stable, but HαS in the emulsion without α-Toc was unstable. These results highlight the importance of maintaining the close proximity of HαS and α-Toc in the emulsion. The stabilization of sanshools using emulsion technology can facilitate the production of various processed beverages, foods, cosmetics, and pharmaceuticals containing Japanese pepper.

2.
Foods ; 12(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37761152

ABSTRACT

Japanese pepper (sansho, Zanthoxylum piperitum) contains several types of sanshools belonging to N-alkylamides. Because of the long-chain unsaturated fatty acids present in their structure, sanshools are prone to oxidative deterioration, which poses problems in processing. In this paper, we evaluated the effects of antioxidants from the genus Zanthoxylum in preventing sanshool degradation using accelerated tests. An ethanolic extract of segment membranes of the sansho fruit pericarp was incubated at 70 °C for 7 days with different antioxidants to determine the residual amount of hydroxy-α-sanshool (HαS) in the extract. α-Tocopherol (α-Toc) showed excellent HαS-stabilizing activity at low concentrations. Among phenolic acids, we noted that the HαS-stabilizing activity increased with the number of hydroxy groups per molecule. For example, gallic acid and its derivatives exhibited excellent sanshool-stabilizing activity. Quercetin was found to be a superior HαS stabilizer compared with hesperetin and naringenin. However, the effective concentration was much higher for phenolic compounds than for α-Toc. These substances are believed to play a role in preventing the decomposition of sanshools in the pericarp of sansho. These sanshool stabilizers should be useful in the development of new beverages, foods, cosmetics, and pharmaceuticals that take advantage of the taste and flavor of sansho.

3.
Jpn J Infect Dis ; 73(1): 8-13, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31474696

ABSTRACT

In this study, umesu phenolics were purified from the salt extracts of Japanese apricot (Nanko-mume cultivar of Prunus mume Sieb. et Zucc.). Characterization of umesu phenolics revealed that, when added to the culture media of the infected cells, they inhibited the multiplication of influenza and many other RNA and DNA viruses. In addition to these antiviral activities, the phenolics significantly decreased the plating efficiency of influenza virus, if present in the virus inoculum. More drastic effects were observed in terms of virucidal activity; the infectivity of several strains of influenza viruses decreased less than 0.001 when they were incubated with 4 mg/ml phenolics at 30 ℃ for 5 min. The virucidal activity of phenolics was found to be more remarkable in acidic conditions; however, the activity was not merely a result of the acidity of the phenolics. These results clearly support the antiviral and virucidal activities of the umesu phenolics against influenza viruses and suggest their potential pharmacological usefulness as disinfectants or preventive medicine against superficial infections, such as the respiratory infections.


Subject(s)
Antiviral Agents/pharmacology , Orthomyxoviridae/drug effects , Phenols/pharmacology , Plant Extracts/pharmacology , Prunus/chemistry , Animals , Cell Line , Chlorocebus aethiops , Culture Media , DNA Viruses/drug effects , Dogs , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Phenols/chemistry , Plant Extracts/chemistry , RNA Viruses/drug effects , Vero Cells
4.
Microbiol Immunol ; 63(9): 359-366, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301156

ABSTRACT

Umesu phenolics were obtained from the salt extracts of Japanese apricot (Nanko-mume cultivar of Prunus mume Sieb. et Zucc.) as purified phenolics. The antiviral activities of umesu phenolics obtained were then examined against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), enveloped DNA viruses. The phenolics inhibited the multiplication of these viruses when added to the culture media of the infected cells. This inhibition occurred at phenolic concentrations at which they showed no severe cytotoxicity. One-step growth experiments showed that the eclipse period in the HSV-1 multiplication process was extended in the presence of umesu phenolics and that the addition of phenolics after the completion of viral DNA replication did not affect their multiplication. More drastic effects were observed on virucidal activities against HSV-1 and HSV-2; the infectivity decreased to 0.0001 when infected cells were incubated with 3 mg/ml phenolics at 30°C for 5 min. These results demonstrate the antiviral and virucidal activities of umesu phenolics and suggest a potential pharmacological use for these phenolics as a sanitizing or preventive medicine against superficial HSV infections.


Subject(s)
Herpes Simplex/drug therapy , Plant Extracts/pharmacology , Prunus armeniaca/chemistry , Simplexvirus/drug effects , Animals , Antiviral Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Chlorocebus aethiops , DNA Replication/drug effects , DNA Viruses/drug effects , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/growth & development , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/growth & development , Humans , Japan , Simplexvirus/growth & development , Vero Cells , Virus Attachment/drug effects , Virus Replication/drug effects
5.
Anal Sci ; 34(10): 1195-1199, 2018.
Article in English | MEDLINE | ID: mdl-30305597

ABSTRACT

A methanolic solution of trans-p-coumaric acid was exposed to ultraviolet radiation and a mixture solution of the trans and cis isomers was subjected to cellulose column chromatography, eluting with an aqueous 0.1% trifluoroacetic acid solution containing methanol (90:10, v/v). Separation of the trans and cis isomers was achieved. The identity of the cis isomer was confirmed by TLC, HPLC, and NMR. Since both the support and eluent are inexpensive, the cis isomers can be obtained economically on both the laboratory and industrial scales.

6.
Jpn J Infect Dis ; 71(5): 333-337, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-29709992

ABSTRACT

Virucidal effects of chlorous acid on enveloped and non-enveloped viruses were characterized. The virucidal activity was prominent in enveloped viruses. However, among non-enveloped viruses, viruses such as human rhinovirus and feline calicivirus showed a significant sensitivity to the reagent, whereas others such as poliovirus and coxsackievirus showed a weak sensitivity to the reagent, suggesting the presence of 2 classes of sensitivity to the reagent, among non-enveloped viruses. In addition, characterization of the mode of inactivation by the reagent revealed that virus inactivation is strongly dependent on virus species, contaminated proteins, and solvent system composition. Comparison of the cytotoxic effects of chlorous acid with those of sodium hypochlorite or sodium dodecyl sulfate (SDS) revealed that chlorous acid was similar to SDS and remarkably weaker than sodium hypochlorite. These results indicate the unique nature of chlorous acid as a potent virucidal agent with tolerable tissue damage, and reveal the merits and limitations of chlorous acid as a disinfectant in food hygiene and sanitizer in healthcare.


Subject(s)
Antiviral Agents/pharmacology , Chlorides/pharmacology , Microbial Viability/drug effects , Viruses/drug effects , Animals , Antiviral Agents/toxicity , Cell Line , Cell Survival/drug effects , Chlorides/toxicity , Humans
7.
Int J Mol Med ; 28(4): 595-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21725588

ABSTRACT

Hot water extracts of coffee grinds and commercial instant coffee solutions have been shown to exhibit marked antiviral and virucidal activities against herpes simplex virus type 1 (HSV-1). Specifically, it has been shown that caffeine and N-methyl-pyridinium formate inhibit the multiplication of HSV-1 in HEp-2 cells. The present study examined the virological properties and the antiviral activity of caffeic acid against HSV-1. Caffeic acid inhibited the multiplication of HSV-1 in vitro, while chlorogenic acid, a caffeic acid ester with quinic acid, did not. These reagents did not have a direct virucidal effect. The one-step growth curve of HSV-1 showed that the addition of caffeic acid at 8 h post infection (h p.i.) did not significantly affect the formation of progeny viruses. An analysis of the influence of the time of caffeic acid addition, revealed that addition at an early time post infection remarkably inhibited the formation of progeny infectious virus in the infected cells, but its addition after 6 h p.i. (i.e., the time of the completion of viral genome replication) did not efficiently inhibit this process. These results indicate that caffeic acid inhibits HSV-1 multiplication mainly before the completion of viral DNA replication, but not thereafter. Although caffeic acid showed some cytotoxicity by prolonged incubation, the observed antiviral activity is likely not the secondary result of the cytotoxic effect of the reagent, because the inhibition of the virus multiplication was observed before appearance of the notable cytotoxicity.


Subject(s)
Antiviral Agents/pharmacology , Caffeic Acids/pharmacology , Simplexvirus/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Caffeic Acids/chemistry , Cell Line , Chlorocebus aethiops , Humans , Molecular Structure , Vero Cells
8.
Int J Mol Med ; 27(6): 803-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21468540

ABSTRACT

Acidic pH is frequently used to inactivate viruses. We have previously shown that arginine synergizes with low pH in enhancing virus inactivation. Considering a potential application of the acid inactivation of viruses for the prevention and treatment of superficial virus infection at body surfaces and fixtures, herein we have examined the effects of various electrolytes on the acid-induced inactivation of the herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), the influenza A virus (IAV) and the poliovirus upon their incubation at 30˚C for 5 min. Eight electrolytes, i.e., phosphate, NaCl, glutamate, aspartate, pyrrolidone carboxylate, citrate, malate and acetate were tested. No detectable inactivation of the poliovirus was observed under the conditions examined, reflecting its acid-resistance. HSV-1 and HSV-2 responded similarly to the acid-treatment and electrolytes. Some electrolytes showed a stronger virus inactivation than others at a given pH and concentration. The effects of the electrolytes were virus-dependent, as IAV responded differently from HSV-1 and HSV-2 to these electrolytes, indicating that certain combinations of the electrolytes and a low pH can exert a more effective virus inactivation than other combinations and that their effects are virus-specific. These results should be useful in designing acidic solvents for the inactivation of viruses at various surfaces.


Subject(s)
Antiviral Agents/pharmacology , Virus Inactivation , Animals , Arginine/pharmacology , Cell Line , Chlorocebus aethiops , Electrolytes/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Hydrogen-Ion Concentration , Influenza A virus/drug effects , Solutions , Solvents , Vero Cells
9.
Exp Ther Med ; 1(6): 983-986, 2010 Nov.
Article in English | MEDLINE | ID: mdl-22993629

ABSTRACT

IN THE PRESENT STUDY, DEHYDROASCORBIC ACID INHIBITED THE MULTIPLICATION OF VIRUSES OF THREE DIFFERENT FAMILIES: herpes simplex virus type 1 (HSV-1), influenza virus type A and poliovirus type 1. Although dehydroascorbic acid showed some cytotoxicity at higher concentrations, the observed antiviral activity was not the secondary result of the cytotoxic effect of the reagent, as the inhibition of virus multiplication was observed at reagent concentrations significantly lower than those resulting in cytotoxicity. Characterization of the mode of the antiviral action of dehydroascorbic acid against HSV-1 revealed that the addition of reagent at any time post infection inhibited the formation of progeny infectious virus in the infected cells, and a one-step growth curve showed that the addition of reagent allowed formation for an additional 2 h, but then almost completely suppressed it. These results indicate that the reagent inhibits HSV-1 multiplication after the completion of viral DNA replication, probably at the step of the envelopment of viral nucleocapsids at the Golgi apparatus of infected cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...