Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5358, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956022

ABSTRACT

As a key component for next-generation wireless communications (6 G and beyond), terahertz (THz) electronic oscillators are being actively developed. Precise and dynamic phase control of ultrafast THz waveforms is essential for high-speed beam steering and high-capacity data transmission. However, measurement and control of such ultrafast dynamic process is beyond the scope of electronics due to the limited bandwidth of the electronic equipment. Here we surpass this limit by applying photonic technology. Using a femtosecond laser, we generate offset-free THz pulses to phase-lock the electronic oscillators based on resonant tunneling diode. This enables us to perform phase-resolved measurement of the emitted THz electric field waveform in time-domain with sub-cycle time resolution. Ultrafast dynamic response such as anti-phase locking behaviour is observed, which is distinct from in-phase stimulated emission observed in laser oscillators. We also show that the dynamics follows the universal synchronization theory for limit cycle oscillators. This provides a basic guideline for dynamic phase control of THz electronic oscillators, enabling many key performance indicators to be achieved in the new era of 6 G and beyond.

2.
Sci Rep ; 9(1): 18125, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31792320

ABSTRACT

Towards exploring advanced applications of terahertz (THz) electromagnetic waves, great efforts are being applied to develop a compact and sensitive THz receiver. Here, we propose a simple coherent detection system using a single resonant tunnelling diode (RTD) oscillator through self-oscillating mixing with an RTD oscillator injection-locked by a carrier wave. Coherent detection is successfully demonstrated with an enhancement in the sensitivity of >20 dB compared to that of direct detection. As a proof of concept, we performed THz wireless communications using an RTD coherent receiver and transmitter. We achieved 30-Gbit/s real-time error-free transmission, which is the highest among all electronic systems without error correction to date. Our results show that the proposed system can reduce the size and power consumption of various THz systems including sensing, imaging and ranging, which would enable progress to be made in a wide range of fields in such as material science, medicine, chemistry, biology, physics, astronomy, security, robotics and motor vehicle.

SELECTION OF CITATIONS
SEARCH DETAIL
...