Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 110: 129856, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914346

ABSTRACT

The discovery and development of structurally distinct lysine methyltransferase G9a inhibitors have been the subject of intense research in epigenetics. Structure-based optimization was conducted, starting with the previously reported seed compound 7a and lead to the identification of a highly potent G9a inhibitor, compound 7i (IC50 = 0.024 µM). X-ray crystallography for the ligand-protein interaction and kinetics study, along with surface plasmon resonance (SPR) analysis, revealed that compound 7i interacts with G9a in a unique binding mode. In addition, compound 7i caused attenuation of cellular H3K9me2 levels and induction of γ-globin mRNA expression in HUDEP-2 cells in a dose-dependent manner.

2.
J Med Chem ; 66(6): 4059-4085, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36882960

ABSTRACT

Identification of structurally novel inhibitors of lysine methyltransferase G9a has been a subject of intense research in cancer epigenetics. Starting with the high-throughput screening (HTS) hit rac-10a obtained from the chemical library of the University of Tokyo Drug Discovery Initiative, the structure-activity relationship of the unique substrate-competitive inhibitors was established with the help of X-ray crystallography and fragment molecular orbital (FMO) calculations for the ligand-protein interaction. Further optimization of the in vitro characteristics and drug metabolism and pharmacokinetics (DMPK) properties led to the identification of 26j (RK-701), which is a structurally distinct potent inhibitor of G9a/GLP (IC50 = 27/53 nM). Compound 26j exhibited remarkable selectivity against other related methyltransferases, dose-dependent attenuation of cellular H3K9me2 levels, and tumor growth inhibition in MOLT-4 cells in vitro. Moreover, compound 26j showed inhibition of tumor initiation and growth in a carcinogen-induced hepatocellular carcinoma (HCC) in vivo mouse model without overt acute toxicity.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase , Lysine
3.
Nat Commun ; 14(1): 23, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635268

ABSTRACT

Sickle cell disease (SCD) is a heritable disorder caused by ß-globin gene mutations. Induction of fetal γ-globin is an established therapeutic strategy. Recently, epigenetic modulators, including G9a inhibitors, have been proposed as therapeutic agents. However, the molecular mechanisms whereby these small molecules reactivate γ-globin remain unclear. Here we report the development of a highly selective and non-genotoxic G9a inhibitor, RK-701. RK-701 treatment induces fetal globin expression both in human erythroid cells and in mice. Using RK-701, we find that BGLT3 long non-coding RNA plays an essential role in γ-globin induction. RK-701 selectively upregulates BGLT3 by inhibiting the recruitment of two major γ-globin repressors in complex with G9a onto the BGLT3 gene locus through CHD4, a component of the NuRD complex. Remarkably, BGLT3 is indispensable for γ-globin induction by not only RK-701 but also hydroxyurea and other inducers. The universal role of BGLT3 in γ-globin induction suggests its importance in SCD treatment.


Subject(s)
Anemia, Sickle Cell , RNA, Long Noncoding , Mice , Humans , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , gamma-Globins/genetics , Erythroid Cells/metabolism , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Gene Expression , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism
4.
Bioorg Med Chem Lett ; 27(17): 4044-4050, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28784294

ABSTRACT

A scaffold-hopping strategy towards a new pyrazolo[1,5-a]pyridine based core using molecular hybridization of two structurally distinct EP1 antagonists, followed by structure-activity relationship-guided optimization, resulted in the identification of potent EP1 antagonists exemplified by 4c, 4f, and 4j, which were shown to reduce pathological intravesical pressure in rats when administered at 1mg/kg iv.


Subject(s)
Drug Discovery , Pyrazoles/pharmacology , Pyridines/pharmacology , Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem ; 25(13): 3406-3430, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28483455

ABSTRACT

Herein we described the design, synthesis and evaluation of a novel series of benzo[d]thiazole derivatives toward an orally active EP1 antagonist. Lead generation studies provided benzo[d]thiazole core from the four designed scaffolds. Optimization of this scaffold in terms of EP1 antagonist potency and ligand-lipophilicity efficiency (LLE; pIC50-clogP) led to a 1,2,3,6-tetrahydropyridyl-substituted benzo[d]thiazole derivative, 7r (IC50 1.1nM; LLE 4.7), which showed a good pharmacological effect when administered intraduodenally in a 17-phenyl trinor-PGE2 (17-PTP)-induced overactive bladder model in rats.


Subject(s)
Benzothiazoles/pharmacology , Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors , Urinary Bladder, Overactive/drug therapy , Administration, Oral , Animals , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Dinoprostone/analogs & derivatives , Disease Models, Animal , Dose-Response Relationship, Drug , Ligands , Molecular Structure , Rats , Structure-Activity Relationship , Urinary Bladder, Overactive/chemically induced
6.
Bioorg Med Chem ; 25(9): 2635-2642, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28342692

ABSTRACT

Novel pyrazolo[1,5-a]pyridine derivatives were designed, synthesized and evaluated as orally active EP1 antagonists for the treatment of overactive bladder. Matched molecular pair analysis (MMPA) allowed the design of a new series of pyrazolo[1,5-a]pyridine derivatives 4-6. Structure-activity relationships (SAR) studies of 4-6 were performed, leading to identification of the nanomolar-level EP1 antagonist 4c, which exhibited good pharmacological effect through intraduodenal (id) administration in a 17-phenyltrinor prostaglandin E2-induced bladder contraction model in rats.


Subject(s)
Pyrazoles/therapeutic use , Pyridines/therapeutic use , Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors , Animals , Cell Line , Male , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Urinary Bladder, Overactive/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...