Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 53(2): 376-389, 2021 01.
Article in English | MEDLINE | ID: mdl-32979866

ABSTRACT

The mechanism underlying the role of tumor necrosis factor alpha (TNF-α) in the development of inflammatory hyperalgesia has been extensively studied, mainly the role of TNF-α in the release of pro-inflammatory cytokines. The current concept relies in the fact that TNF-α stimulates the cascade release of other pro-inflammatory cytokines, such as IL-1ß, IL-6, and IL-8 (CINC-1 in rats), triggering the release of the final inflammatory mediator prostaglandin E2 (PGE2 ) and sympathetic amines that directly sensitize the nociceptors. However, this may not be the sole mechanism involved as the blockade of TNF-α synthesis by thalidomide prevents hyperalgesia without interrupting the synthesis of IL-1ß, IL-6, and CINC-1. Therefore, we hypothesized that activation of TNF-α receptor type 1 (TNFR1) by TNF-α increases nociceptors' susceptibility to the action of PGE2 and dopamine. We have found out that intrathecal administration of oligodeoxynucleotide-antisense (ODN-AS) against TNFR1 or thalidomide prevented carrageenan-induced hyperalgesia. The co-administration of TNF-α with a subthreshold dose of PGE2 or dopamine that does not induce hyperalgesia by itself in the hind paw of Wistar rats pretreated with dexamethasone (to prevent the endogenous release of cytokines) induced a robust hyperalgesia that was prevented by intrathecal treatment with ODN-AS against TNFR1. We consider that the activation of neuronal TNFR1 by TNF-α decisively increases the susceptibility of the peripheral afferent neuron to the action of final inflammatory mediators - PGE2 and dopamine - that ultimately induce hyperalgesia. This mechanism may also underlie the analgesic action of thalidomide.


Subject(s)
Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , Animals , Cytokines , Hyperalgesia/chemically induced , Neurons, Afferent , Pain , Rats , Rats, Wistar
2.
J Ethnopharmacol ; 157: 257-67, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25311275

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: An ethnopharmacological survey indicated that leaves from Eugenia punicifolia (Kunth) DC. (Myrtaceae) are popularly used as a natural therapeutic agent to treat pain and inflammation. AIM OF THE STUDY: The overall objective of the present study was to evaluate the antinociceptive, anti-inflammatory and gastroprotective activities of a hydroalcoholic extract of leaves from Eugenia punicifolia (HEEP) in rodents. MATERIAL AND METHODS: The antinociceptive effects of HEEP were evaluated in mice after oral administration in chemical (formalin and glutamate) and thermal (hot-plate) tests. We evaluated the involvement of the glutamatergic, opioidergic and nitrergic pathways in the antinociception of HEEP and the effect of HEEP on the inhibition of p38α MAPK. The anti-inflammatory effect of HEEP was evaluated in mice and rats using xylene-induced ear edema and carrageenan-induced paw edema, respectively. Furthermore, the gastroprotective effect of HEEP was evaluated in rats with acute gastric lesions induced by ethanol or indomethacin. Finally, we performed a phytochemical analysis of HEEP. RESULTS: The oral administration of HEEP (125, 250 and 500mg/kg, p.o.) significantly inhibited the neurogenic and inflammatory phases of formalin-induced licking, and HEEP (250mg/kg, p.o.) also significantly inhibited the nociception caused by glutamate. The antinociceptive effects of HEEP were significantly reversed by l-arginine (500mg/kg, i.p.) but not by naloxone (1mg/kg, i.p.) in the formalin test. HEEP did not affect animal motor performance in the rotarod model. In addition, HEEP also increased the paw withdraw latency in the hot-plate test. HEEP significantly inhibited ear edema induced by xylene (64%) and paw edema induced by carrageenan (50%) compared to the control group. Furthermore, HEEP (3-30mg/mL) also inhibited the phosphorylation of p38α MAPK by approximately 90%. In addition, HEEP (125, 250 and 500mg/kg, p.o.) protected the rats against ethanol (88.4-99.8%) and indomethacin (53-72.3%) and increased the mucus levels of the gastric mucosa without producing an antisecretory effect. The phytochemical profile of HEEP obtained using HPLC-PDA showed secondary metabolites already reported for the genus, mostly flavonoids, gallotannins and proanthocyanidins. CONCLUSIONS: These data show for the first time that HEEP has significant antinociceptive and anti-inflammatory effects, which appear to be related to the inhibition of the glutamatergic system, the synthesis of nitric oxide and the inhibition of the phosphorylation of p38α MAPK. HEEP also has interesting gastroprotective effects related to the maintenance of protective factors, such as mucus production. These results support the use of Eugenia punicifolia in popular medicine and demonstrate that this plant has therapeutic potential for the development of phytomedicines with antinociceptive, anti-inflammatory and gastroprotective properties.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Eugenia/chemistry , Plant Extracts/pharmacology , Analgesics/administration & dosage , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Disease Models, Animal , Dose-Response Relationship, Drug , Edema/drug therapy , Female , Glutamic Acid/metabolism , Inflammation/drug therapy , Male , Medicine, Traditional , Mice , Pain/drug therapy , Pain Measurement , Plant Extracts/administration & dosage , Plant Leaves , Rats , Rats, Wistar
3.
Eur J Pharmacol ; 736: 16-25, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24792822

ABSTRACT

Citral (3,7-dimethyl-2,6-octadienal) is an open-chain monoterpenoid present in the essential oils of several medicinal plants. The aim of this work was to evaluate the effects of orally administered citral in experimental models of acute and chronic nociception, inflammation, and gastric ulcers caused by non-steroidal anti-inflammatory drugs (NSAIDs). Oral treatment with citral significantly inhibited the neurogenic and inflammatory pain responses induced by intra-plantar injection of formalin. Citral also had prophylactic and therapeutic anti-nociceptive effects against mechanical hyperalgesia in plantar incision surgery, chronic regional pain syndrome, and partial ligation of sciatic nerve models, without producing any significant motor dysfunction. In addition, citral markedly attenuated the pain response induced by intra-plantar injection of glutamate and phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator), as well as by intrathecal (i.t.) injection of ionotropic and metabotropic glutamate receptor agonists (N-methyl-D-aspartic acid [NMDA] and 1-amino-1,3-dicarboxycyclopentane [trans-ACPD], respectively), substance P, and cytokine tumour necrosis factor-α. However, citral potentiated behaviours indicative of pain caused by i.t., but not intra-plantar, injection of a transient receptor potential vanilloid receptor type 1 (TRPV1) agonist. Finally, the anti-nociceptive action of citral was found to involve significant activation of the 5-HT2A serotonin receptor. The effect of citral was accompanied by a gastro-protective effect against NSAID-induced ulcers. Together, these results show the potential of citral as a new drug for the treatment of pain.


Subject(s)
Acute Pain/drug therapy , Analgesics/therapeutic use , Chronic Pain/drug therapy , Monoterpenes/therapeutic use , Receptor, Serotonin, 5-HT2A/metabolism , Acute Pain/chemically induced , Acute Pain/metabolism , Acyclic Monoterpenes , Analgesics/pharmacology , Animals , Capsaicin , Chronic Pain/etiology , Chronic Pain/metabolism , Excitatory Amino Acids , Formaldehyde , Glutamic Acid , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Ischemia/complications , Ketanserin/pharmacology , Male , Mice , Monoterpenes/pharmacology , Neuralgia/drug therapy , Neuralgia/metabolism , Pain, Postoperative/drug therapy , Pain, Postoperative/metabolism , Rats, Wistar , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Substance P , Tetradecanoylphorbol Acetate , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...