Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 479(11): 1127-1145, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35574701

ABSTRACT

Voltage-sensing proteins generally consist of voltage-sensor domains and pore-gate domains, forming the voltage-gated ion channels. However, there are several unconventional voltage-sensor proteins that lack pore-gate domains, conferring them unique voltage-sensing machinery. TMEM266, which is expressed in cerebellum granule cells, is one of the interesting voltage-sensing proteins that has a putative intracellular coiled-coil and a functionally unidentified cytosolic region instead of a pore-gate domain. Here, we approached the molecular function of TMEM266 by performing co-immunoprecipitation experiments. We unexpectedly discovered that TMEM266 proteins natively interact with the novel short form splice variants that only have voltage-sensor domains and putative cytosolic coiled-coil region in cerebellum. The crystal structure of coiled-coil region of TMEM266 suggested that these coiled-coil regions play significant roles in forming homodimers. In vitro expression experiments supported the idea that short form TMEM266 (sTMEM266) or full length TMEM266 (fTMEM266) form homodimers. We also performed proximity labeling mass spectrometry analysis for fTMEM266 and sTMEM266 using Neuro-2A, neuroblastoma cells, and fTMEM266 showed more interacting molecules than sTMEM266, suggesting that the C-terminal cytosolic region in fTMEM266 binds to various targets. Finally, TMEM266-deficient animals showed the moderate abnormality in open-field test. The present study provides clues about the novel voltage-sensing mechanism mediated by TMEM266.


Subject(s)
Cerebellum , Ion Channels , Animals , Ion Channels/metabolism , Mice
2.
J Biochem ; 166(2): 197-204, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30989194

ABSTRACT

Bacteria have evolved various types of flagellum, an organella for bacterial motility, to adapt to their habitat environments. The number and the spatial arrangement of the flagellum are precisely controlled to optimize performance of each type of the flagellar system. Vibrio alginolyticus has a single sheathed flagellum at the cell pole for swimming. SflA is a regulator protein to prevent peritrichous formation of the sheathed flagellum, and consists of an N-terminal periplasmic region, a transmembrane helix, and a C-terminal cytoplasmic region. Whereas the cytoplasmic region has been characterized to be essential for inhibition of the peritrichous growth, the role of the N-terminal region is still unclear. We here determined the structure of the N-terminal periplasmic region of SflA (SflAN) at 1.9-Å resolution. The core of SflAN forms a domain-swapped dimer with tetratricopeptide repeat (TPR)/Sel1-like repeat (SLR) motif, which is often found in the domains responsible for protein-protein interaction in various proteins. The structural similarity and the following mutational analysis based on the structure suggest that SflA binds to unknown partner protein by SflAN and the binding signal is important for the precise control of the SflA function.


Subject(s)
Bacterial Proteins/metabolism , Flagella/metabolism , Tetratricopeptide Repeat/genetics , Vibrio alginolyticus/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Flagella/genetics , Protein Binding , Vibrio alginolyticus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...