Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 503(3): 2083-2088, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30103948

ABSTRACT

Cellular reducing-oxidizing (redox) potential is mainly determined by the concentration ratio between reduced and oxidized glutathiones. It is normally kept at a moderately reduced state but affected to some extent by metabolic activities such as respiration and/or photosynthesis. Changes in redox potential induce many cellular activities collectively called redox responses. For an understanding of the dynamics of the cellular redox responses, redox potential must be accurately assessed in vivo. In this study, we developed a method to measure the in vivo redox potential in the green alga Chlamydomonas reinhardtii, using Oba-Qc, a recently developed redox-monitoring protein. Taking advantage of the periodic flagellar assembly, we introduced Oba-Qc molecules into the flagella at a constant density. Fluorescence signals from flagella in live cells, calibrated against the fluorescence from the samples in buffers of known redox potentials, determined the redox potential to be ∼-250 mV in the light and ∼-280 mV in the dark. Introduction of a sensor protein fused with a structural protein that assembles at a constant density will be also applicable for measurements of various kinds cellular signals in flagella.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Flagella/metabolism , Luminescent Proteins/metabolism , Cells, Cultured , Chlamydomonas reinhardtii/cytology , Fluorescence , Luminescent Proteins/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...