Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 18: 580-587, 2022.
Article in English | MEDLINE | ID: mdl-35673408

ABSTRACT

Novel pyridine-based fluorescing compounds, viz. pyrido[1,2-a]pyrrolo[3,4-d]pyrimidines 3a,b and N-methyl-4-((pyridin-2-yl)amino)maleimides 4a-e, were selectively prepared by a one-pot reaction between a functionalized maleimide and 2-aminopyridines with electron-donating or electron-withdrawing groups at position 5 and were investigated photophysically and computationally. The photophysical studies revealed that all the synthesized compounds exhibited fluorescence in organic solvents, while N-methyl-4-((pyridin-2-yl)amino)-substituted maleimide derivatives 4a-e, which are based on an acceptor-donor-acceptor (A-D-A) system, exhibited aggregation-induced emission enhancement (AIEE) properties in aqueous media. Compounds 4a and 4e, bearing electron-withdrawing groups (Br and CF3, respectively) showed 7.0 and 15 times fluorescence enhancement. Time-dependent density functional theory (TD-DFT) calculations were performed to gain better insight into the electronic nature of the compounds with and without AIEE properties.

2.
Chemosphere ; 288(Pt 3): 132610, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34678340

ABSTRACT

Achieving high water recovery using reverse osmosis membranes is challenging during water recycling because the increased concentrations of organics and inorganics in wastewater can cause rapid membrane fouling, necessitating frequent cleaning using chemical agents. This study evaluated the potential of membrane distillation to purify reverse osmosis-concentrated wastewater and achieve 98% overall water recovery for potable water reuse. The results indicate that membrane fouling during membrane distillation treatment was low (4% reduction in permeability) until 98% water recovery. In contrast, membrane fouling during reverse osmosis treatments was high (73% reduction in permeability) before reaching 90% water recovery. Furthermore, membrane distillation showed superior performance in removing dissolved ions (99.9%) from wastewater as compared with reverse osmosis (98.9%). However, although membrane distillation removed most trace organic chemicals tested in this study, a negligible rejection (11%) was observed for N-nitrosodimethylamine, a disinfection byproduct regulated in potable water reuse. In contrast, RO treatment exhibited a high removal of N-nitrosodimethylamine (70%). Post-treatment (e.g., advanced oxidation) after reverse osmosis and membrane distillation may be needed to comply with the N-nitrosodimethylamine regulations. Overall, the membrane distillation process had the capacity to purify reverse osmosis concentrate with insignificant membrane fouling.


Subject(s)
Drinking Water , Water Purification , Distillation , Membranes, Artificial , Osmosis , Wastewater
3.
Beilstein J Org Chem ; 8: 266-74, 2012.
Article in English | MEDLINE | ID: mdl-22423294

ABSTRACT

New fluorescent compounds, benzo[4,5]thieno[3,2-d]pyrimidine 5,5-dioxides (3a-g), 2-amino-4-methylsulfanylbenzo[4,5]thieno[3,2-d]pyrimidine (6), and 2-amino-4-methylsulfanyl-7-methoxybenzo[4,5]furo[3,2-d]pyrimidine (7), were synthesized in good yields from heterocyclic ketene dithioacetals (1a-c) and guanidine carbonate (2a) or (S)-methylisothiourea sulfate (2b) in pyridine under reflux. Among the fused pyrimidine derivatives, compound 3c, which has an amino group at the 2-position and a benzylamino group at the 4-position of the pyrimidine ring, showed the strongest solid-state fluorescence. The absorption and emission properties of the compounds were quantitatively reproduced by a series of ab initio quantum-chemical calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...