Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892469

ABSTRACT

Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized into mastocytoma MST cells, peritoneal cell-derived mast cells, and bone marrow-derived mast cells. The internalized amount of L-Hpse was significantly higher than that of M-Hpse. In MST cells, L-Hpse was continuously internalized for up to 8 h, while the uptake of M-Hpse was saturated after 2 h of incubation. L-Hpse and M-Hpse are similarly bound to the MST cell surface. The expression level of cell surface heparan sulfate was reduced in MST cells incubated with M-Hpse. The internalized amount of M-Hpse into mast cells was significantly increased in the presence of heparastatin (SF4), a small molecule heparanase inhibitor that does not affect the binding of heparanase to immobilized heparin. Enzymatically quiescent M-Hpse was prepared with a point mutation at Glu335. The internalized amount of mutated M-Hpse was significantly higher than that of wild-type M-Hpse but similar to that of wild-type and mutated L-Hpse. These results suggest that the enzymatic activity of heparanase negatively regulates the mast cell-mediated uptake of heparanase, possibly via the downregulation of cell surface heparan sulfate expression.


Subject(s)
Glucuronidase , Heparitin Sulfate , Mast Cells , Mast Cells/metabolism , Glucuronidase/metabolism , Glucuronidase/genetics , Animals , Heparitin Sulfate/metabolism , Mice , Cell Line, Tumor
2.
RSC Adv ; 12(43): 28113-28122, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320260

ABSTRACT

Dihydropyrimidines (DPs) show a wide range of biological activities for medicinal applications. Among the DP derivatives, 2-aryl-DPs have been reported to display remarkable pharmacological properties. In this work, we describe a method for the synthesis of hitherto unavailable 6-unsubstituted 2-aryl-DPs by Pd-catalyzed/Cu-mediated carbon-carbon cross-coupling reaction of 1-Boc 2-methylthio-DPs with organostannane reagents. The Boc group of the substrate significantly increases the substrate reactivity. Aryl tributylstannanes having various substituents such as MeO, Ph, CF3, CO2Me, and NO2 groups smoothly afforded the corresponding products in high yields. Various heteroaryl tributylstannanes having 2-, or 3-thienyl, 2-, or 3-pyridinyl groups were also applicable to the reaction. Regarding the substituents at the 4-position, the reactions of DPs bearing various aryl and alkyl substituents proceeded smoothly to give the desired products. The Boc group of the products was removed under a standard acidic condition to produce N-unsubstituted DP as a mixture of the tautomers in quantitative yields. The synthetic procedure was also applied to 4,4,6-trisubstituted 2-methylthio-DP to give novel 2,4,4,5,6-pentasubstituted DP. Therefore, the Pd-catalyzed/Cu-mediated reaction should help expand the DP-based molecular diversity, which would impact biological and pharmacological studies.

3.
ACS Macro Lett ; 11(6): 723-726, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35575353

ABSTRACT

Highly refractive and X-ray shielding polymer films were prepared by bulk radical copolymerization of diphenylstyrylbismuthine (MStBi) with tristyrylbismuthine (TStBi). For example, a yellow transparent film was obtained by copolymerization of MStBi and TStBi in a ratio of 70:30 (w/w). The refractive index (nD) and radiopacity of the film of these polymers are 1.72 and 1.60 µm-Al/µm-polymer, respectively. These properties are higher than those of the reported bismuth-containing polymers. The thermal stability and flexural module of the polymer films were controllable by the feed ratio of TStBi. The polymer films also exhibited high surface hardness and solvent resistance due to the rigid and cross-linked structure. The chemical and thermal stability and higher refractive index and radiopacity of the polymers suggest the potential applications for X-ray shielding of optical materials with high refractive indices.

4.
Chem Pharm Bull (Tokyo) ; 70(2): 111-119, 2022.
Article in English | MEDLINE | ID: mdl-35110431

ABSTRACT

An efficient synthetic method for novel 4,4-disubstituted 3,4-dihydropyrimidin-2(1H)-ones 5 and -thiones 6 was developed. The cyclocondensation reaction of O-methylisourea hemisulfate salt 11 with 8 gives a tautomeric mixture of dihydropyrimidines 12 and 13 following acidic hydrolysis of the cyclized products to produce 5 in high yields. Thionation reaction of 5 at the 2-position smoothly proceeds to give 2-thioxo derivatives 6. These compounds 5 and 6, corresponding to the products of a Biginelli-type reaction using urea or thiourea, a ketone and a 1,3-dicarbonyl compound, have long been inaccessible and hitherto unavailable for medicinal chemistry. These methods are invaluable for the synthesis of 5 and 6, which have been inaccessible by conventional methods. Therefore, the synthetic methods established in this study will expand the molecular diversity of their related derivatives. These compounds were also assessed for their antiproliferative effect on a human promyelocytic leukemia cell line, HL-60. Treatment of 10 µM 6b and 6d showed high inhibitory activity similarly to 1 µM all-trans retinoic acid (ATRA), indicating that the 2-thioxo group and length of two alkyl substituents at the 4-position are strongly related to activity.


Subject(s)
Antineoplastic Agents/pharmacology , Ketones/pharmacology , Pyrimidinones/pharmacology , Thiones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HL-60 Cells , Humans , Ketones/chemistry , Molecular Structure , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship , Thiones/chemical synthesis , Thiones/chemistry
5.
J Antibiot (Tokyo) ; 74(10): 734-742, 2021 10.
Article in English | MEDLINE | ID: mdl-34282315

ABSTRACT

A series of analogs of vegfrecine, a natural quinone vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor, was synthesized via oxidative amination of 2,5-dihydroxybenzamide with functionalized arylamine followed by ammonolysis and substitution of the quinone ring. The inhibitory activities of the analogs against the VEGFR-1 and -2 tyrosine kinases were assayed in vitro with the aim to identify a compound suitable to treat cancer and inflammatory diseases. Alterations of the functionality of the phenyl group, substitution of the quinone ring, and oxidative cyclization of the 1-carboxamide-2-aminoquinone moiety to form an isoxazole quinone ring were examined. Introduction of halo- and alkyl-substituents at the 5'-position of the phenyl ring resulted in potent inhibition of the VEGFR-1 and -2 tyrosine kinases. In particular, structural modification at C-5' on the phenyl ring was shown to significantly affect the selectivity of the inhibition between the VEGFR-1 and -2 tyrosine kinases. Compound 8, 5'-methyl-vegfrecine, showed superior selectivity toward the VEGFR-2 tyrosine kinase over the VEGFR-1 tyrosine kinase.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzoquinones/chemistry , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Benzoquinones/pharmacology , Cell Survival/drug effects , Drug Discovery , Mice , Molecular Docking Simulation , Molecular Structure , NIH 3T3 Cells , Structure-Activity Relationship
6.
Yakugaku Zasshi ; 141(2): 151-161, 2021.
Article in Japanese | MEDLINE | ID: mdl-33518632

ABSTRACT

I here present the results of our studies on the synthesis and functional analysis of tautomeric dihydropyrimidines (DPs) and related compounds in two sections. In the first section, we describe our experimental and theoretical studies on the thermodynamics and properties of 2-substituted 1,4- and 1,6-dihydropyrimidine-5-carboxylates by 1H NMR measurements and density functional theory (DFT) calculations, respectively. The concentration ratios of tautomers a/b of DPs 1, 2, and 3 were determined under various conditions to determine the effects of temperature, solvent, and concentration on thermodynamics data. The obtained free energy differences (ΔG), enthalpy differences (ΔH), and entropy differences (ΔS) are discussed in terms of the molecular structures, dipole moments (DM), and electrostatic potential maps obtained by DFT calculations to clarify the nature of DPs 4-8. In the second section, an efficient synthetic method developed for 6-unsubstituted 3,4-dihydropyrimidin-2(1H)-thiones 9 and 2-ones 10 is described. The novelties of the synthesis protocol are as follows: 1) the use of Lewis acid-mediated reaction, 2) good to high yields, and 3) its broad scope of applicability to aldehydes and ureas. Hitherto unavailable 6-unsubstituted 2-amino DP 11 and 2-aryl DP 12 were obtained from 9 by a substitution reaction with the amine and the Liebeskind-Srogl reaction, respectively. The compounds 9, 10, and related 6-methyl derivatives 19-21 were assessed for their antiproliferative effect on the human promyelocytic leukemia cell line HL-60. 4,4-Dipropyl derivative 20 showed relatively strong activity with an IC50 value of 341 nM.


Subject(s)
Cell Proliferation/drug effects , Leukemia, Promyelocytic, Acute/pathology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Dose-Response Relationship, Drug , HL-60 Cells , Humans , Molecular Structure , Pyrimidines/chemistry , Solvents , Static Electricity , Structure-Activity Relationship , Temperature , Thermodynamics
7.
ACS Chem Biol ; 16(1): 150-164, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33346648

ABSTRACT

SiRNAs are strong gene-silencing agents that function in a target sequence-specific manner. Although siRNAs might one day be used in therapy for intractable diseases such as cancers, a number of problems with siRNAs must first be overcome. In this study, we developed 16 different types of lipid-conjugated siRNAs (lipid-siRNAs) that could effectively inhibit the expression of target genes. We determined the hybridization properties, cellular uptake efficacies, and RNAi potencies of the resulting lipid-siRNAs. The lipid-siRNAs exhibited a mild interaction with Lipofectamine RNAiMAX (LFRNAi) as a transfection reagent, and a high membrane permeability was observed in all lipid-siRNAs-LFRNAi complexes; the conjugate siRNAs composed of 16-18 carbon chains as fatty acids showed an especially good cellular uptake efficacy. The in vitro RNAi effect of lipid-siRNAs targeted to a ß-catenin gene exhibited a strong RNAi potency compared with those of unmodified siRNAs. In particular, the conjugate siRNAs composed of 16-18 carbon chains as fatty acids showed excellent RNAi potencies with prolonged effectivities. Interestingly, the RNAi potencies of conjugate siRNAs containing 18 carbon chains with a trans-form (elaidic acid and trans-vaccenic acid) were inferior to those of the carbon chains with a cis-form (oleic acid and cis-vaccenic acid). These lipid-siRNAs can solve the many problems hindering the clinical application of siRNAs.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Lipids/chemistry , RNA Interference , RNA, Small Interfering/chemistry , Gene Silencing , HT29 Cells , Humans , Kinetics , Liposomes
8.
Chem Biol Drug Des ; 93(4): 570-581, 2019 04.
Article in English | MEDLINE | ID: mdl-30560565

ABSTRACT

In this study, we synthesized Dicer-substrate siRNA conjugated with palmitic acid at the 5'-end of the sense strand (C16-DsiRNA), and examined its RNAi effect on ß-catenin as a target gene in a colon cancer cell line, HT29Luc, both in vitro and in vivo. We examined the in vitro RNAi effect in HT29Luc cells and found that C16-DsiRNA strongly inhibited expression of the ß-catenin gene in comparison with non-modified DsiRNA. Also, high membrane permeability of C16-DsiRNA was exhibited, and it was confirmed that most of the C16-DsiRNA was localized in cytoplasm of HT29Luc cells. In regard to the in vivo RNAi effect, C16-DsiRNA complexed with Invivofectamine targeting the ß-catenin gene was locally administered to a subcutaneous tumor formed by implantation of HT29Luc cells into the subcutis of nude mice; we evaluated the effect by measuring the bioluminescence increase, which reflects tumor growth, using an in vivo imaging system. As a result, C16-DsiRNA strongly inhibited the growth of tumors formed in subcutis of nude mice compared with non-modified DsiRNA, and this in vivo RNAi effect lasted up to 15 days. Our results suggest that C16-DsiRNA should be vigorously pursued as a novel nucleic acid medicine for clinical treatment of cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Palmitic Acid/chemistry , RNA, Small Interfering/chemistry , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Disease Models, Animal , Drug Design , Female , Mice , Mice, Nude , RNA Interference , Skin Neoplasms/pathology , Transplantation, Heterologous , beta Catenin/antagonists & inhibitors , beta Catenin/genetics , beta Catenin/metabolism
10.
J Antibiot (Tokyo) ; 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29089599

ABSTRACT

Microbial metabolites have attracted increasing interest as a source of therapeutics and as probes for biological mechanisms. New microbial metabolites and derivatives targeted at inflammation and bone disease therapy have been identified by focusing on prostaglandin release, osteoblast differentiation and immune cell functions. These modulators of inflammatory processes and bone disease contribute to our understanding of biological mechanisms and support identification of the therapeutic potential of drug lead candidates. The present review describes recent advances in the chemistry and analysis of inhibitors of prostaglandin release or other functional molecules of immune cells, as well as inducers of osteoblast differentiation, including biological and pharmacological activities.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.138.

11.
J Antibiot (Tokyo) ; 70(12): 1146-1149, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29066793

ABSTRACT

Osteoblast and adipocyte are differentiated from mesenchymal stem cells and dysregulation of the differentiation might result in disease, such as osteoporosis and diabetes. To find small compounds that induce osteoblast differentiation, we screened an in-house natural compounds library with mouse preosteoblastic MC3T3-E1 cells using alkaline phosphatase (ALP) expression as an early osteoblast marker. We found that phenazine-1-carboxylic acid (PCA), one of the major phenazine derivatives produced by Pseudomonas, induced osteoblast differentiation in the cells at micromolar concentrations. PCA acted synergistically with an agonist of hedgehog signaling in inducing ALP activity in the cells. We also found that 2-hydroxy-PCA (2H-PCA) induced osteoblast differentiation in the cells but 2-methoxy-PCA and 1-hydroxy-phenazine did not. Unexpectedly, treatment of mouse pluripotent mesenchymal C3H10T1/2 cells with PCA or 2H-PCA induced an obvious morphological change. Oil Red O staining and real-time reverse-transcription PCR analysis revealed that PCA induced not osteoblast differentiation but adipocyte differentiation in C3H10T1/2 cells. These compounds could allow us to investigate the mechanism of osteoblast and adipocyte differentiation in the two model cell systems through a chemical biology approach.


Subject(s)
Adipocytes/cytology , Adipogenesis/drug effects , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis/drug effects , 3T3 Cells , Alkaline Phosphatase/biosynthesis , Animals , Cell Line , Mice , Phenazines/pharmacology , Pseudomonas/metabolism
12.
J Am Chem Soc ; 139(42): 14881-14884, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28991493

ABSTRACT

Here we introduce silyl ether linkage as a novel dynamic covalent motif for dynamic material design. Through introduction of a neighboring amino moiety, we show that the silyl ether exchange rate can be accelerated by almost three orders of magnitude. By incorporating such silyl ether linkages into covalently cross-linked polymer networks, we demonstrate dynamic covalent network polymers displaying both malleability and reprocessability. The malleability of the networks is studied by monitoring stress relaxation at varying temperature, and their topology freezing temperatures are determined. The tunable dynamic properties coupled with the high thermal stability and reprocessability of silyl ether-based networks open doors to many potential applications for this family of materials.

15.
Int Immunopharmacol ; 35: 15-21, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27015605

ABSTRACT

Local infiltration of inflammatory cells is regulated by a number of biological steps during which the cells likely penetrate through subendothelial basement membranes that contain heparan sulfate proteoglycans. In the present study, we examined whether administration of heparastatin (SF4), an iminosugar-based inhibitor of heparanase, could suppress local inflammation and degradation of heparan sulfate proteoglycans in basement membranes. In a carrageenan- or formyl peptide-induced dorsal air pouch inflammation model, the number of infiltrated neutrophils and monocytes was significantly lower in mice after topical administration of heparastatin (SF4). The concentration of chemokines MIP-2 and KC in pouch exudates of drug-treated mice was similar to control. In a zymosan-induced peritonitis model, the number of infiltrated cells was not altered in drug-treated mice. To further test how heparastatin (SF4) influences transmigration of inflammatory neutrophils, its suppressive effect on migration and matrix degradation was examined in vitro. In the presence of heparastatin (SF4), the number of neutrophils that infiltrated across a Matrigel-coated polycarbonate membrane was significantly lower, while the number of neutrophils passing through an uncoated membrane was not altered. Lysate of bone marrow-derived neutrophils released sulfate-radiolabeled macromolecules from basement membrane-like extracellular matrix, which was suppressed by heparastatin (SF4). Heparan sulfate degradation activity was almost completely abolished after incubation of lysate with protein G-conjugated anti-heparanase monoclonal antibody, strongly suggesting that the activity was due to heparanase-mediated degradation. Taken together, in a dorsal air pouch inflammation model heparastatin (SF4) potentially suppresses extravasation of inflammatory cells by impairing the degradation of basement membrane heparan sulfate.


Subject(s)
Basement Membrane/drug effects , Enzyme Inhibitors/therapeutic use , Glucuronidase/antagonists & inhibitors , Imino Sugars/therapeutic use , Inflammation/drug therapy , Monocytes/drug effects , Neutrophils/drug effects , Nipecotic Acids/therapeutic use , Animals , Carrageenan/immunology , Cell Movement/drug effects , Cells, Cultured , Enzyme Inhibitors/chemical synthesis , Heparitin Sulfate/metabolism , Humans , Imino Sugars/chemical synthesis , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL , Models, Animal , Monocytes/physiology , N-Formylmethionine Leucyl-Phenylalanine/immunology , Neutrophils/physiology , Nipecotic Acids/chemical synthesis
16.
Biochem Biophys Res Commun ; 469(4): 878-83, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26713365

ABSTRACT

To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production.


Subject(s)
Chemokines/immunology , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/immunology , Glucuronidase/immunology , Heparitin Sulfate/immunology , Inflammasomes/immunology , Catalysis , Cell Line, Tumor , Enzyme Activation , Humans
17.
Biol Pharm Bull ; 37(9): 1564-8, 2014.
Article in English | MEDLINE | ID: mdl-25008238

ABSTRACT

Vanillate is converted to protocatechuate by an O-demethylase consisting of VanA and VanB in Streptomyces sp. NL15-2K. In this study, vanillate demethylase from this strain was functionally expressed in Escherichia coli, and its substrate range for vanillate analogs was determined by an in vivo assay using recombinant whole cells. Among aromatic methyl ethers, vanillate, syringate, m-anisate, and veratrate were good substrates, whereas ferulate, vanillin, and guaiacol were not recognized by Streptomyces vanillate demethylase. After vanillate, 4-hydroxy-3-methylbenzoate was a better substrate than m-anisate and veratrate, and the 3-methyl group was efficiently oxidized to a hydroxymethyl group. These observations suggest that the combination of a carboxyl group on the benzene ring and a hydroxyl group in the para-position relative to the carboxyl group may be preferable for substrate recognition by the enzyme. (1)H-NMR analysis showed that the demethylation product of veratrate was isovanillate rather than vanillate. Therefore, it was concluded that O-demethylation of veratrate by Streptomyces vanillate demethylase occurred only at the meta-position relative to the carboxyl group.


Subject(s)
Oxidoreductases, O-Demethylating/genetics , Oxidoreductases, O-Demethylating/metabolism , Streptomyces/enzymology , Vanillic Acid/analogs & derivatives , Vanillic Acid/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Plasmids , Streptomyces/genetics
18.
Drug Metab Dispos ; 42(2): 229-38, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24255116

ABSTRACT

Functional protein-protein interactions between UDP-glucuronosyltransferase (UGT)1A isoforms and cytochrome P450 (CYP)3A4 were studied. To this end, UGT1A-catalyzed glucuronidation was assayed in Sf-9 cells that simultaneously expressed UGT and CYP3A4. In the kinetics of UGT1A6-catalyzed glucuronidation of serotonin, both Michaelis constant (Km) and maximal velocity (Vmax) were increased by CYP3A4. When CYP3A4 was coexpressed with either UGT1A1 or 1A7, the Vmax for the glucuronidation of the irinotecan metabolite (SN-38) was significantly increased. S50 and Km both which are the substrate concentration giving 0.5 Vmax were little affected by simultaneous expression of CYP3A4. This study also examined the catalytic properties of the allelic variants of UGT1A1 and 1A7 and their effects on the interaction with CYP3A4. Although the UGT1A1-catalyzing activity of 4-methylumbelliferone glucuronidation was reduced in its variant, UGT1A1*6, the coexpression of CYP3A4 restored the impaired function to a level comparable with the wild type. Similarly, simultaneous expression of CYP3A4 increased the Vmax of UGT1A7*1 (wild type) and *2 (N129K and R131K), whereas the same was not observed in UGT1A7*3 (N129K, R131K, and W208R). In the kinetics involving different concentrations of UDP-glucuronic acid (UDP-GlcUA), the Km for UDP-GlcUA was significantly higher for UGT1A7*2 and *3 than *1. The Km of UGT1A7*1 and *3 was increased by CYP3A4, whereas *2 did not exhibit any such change. These results suggest that (1) CYP3A4 changes the catalytic function of the UGT1A subfamily in a UGT isoform-specific manner and (2) nonsynonymous mutations in UGT1A7*3 reduce not only the ability of UGT to use UDP-GlcUA but also CYP3A4-mediated enhancement of catalytic activity, whereas CYP3A4 is able to restore the UGT1A1*6 function.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Biotransformation , Camptothecin/analogs & derivatives , Camptothecin/metabolism , Catalysis , Cytochrome P-450 CYP3A/genetics , Glucuronosyltransferase/genetics , Humans , Hymecromone/metabolism , Isoenzymes , Kinetics , Mutation , Protein Interaction Mapping , Serotonin/metabolism , Sf9 Cells , Substrate Specificity , Transfection
19.
Bioconjug Chem ; 24(12): 2045-57, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24274056

ABSTRACT

Three types of siRNAs and three types of left-overhang siRNAs (LoRNAs) were synthesized along with their conjugations with palmitic acid (C16) to investigate the correlation between Dicer recognition and gene-silencing potency. The siRNA types were composed of 21-nucleotide (nt), 23-nt, and 25-nt lengths of sense and antisense strands with a 2-nt overhang at each 3'-end. The three LoRNA types were composed of a 21-nt, a 23-nt, and a 25-nt length of sense strand with a 2-nt DNA at the 3'-blunt-end and a 23-nt, a 25-nt, and a 27-nt length of antisense strand with a 2-nt overhang at the 3'-end. Additionally, each of these siRNAs and LoRNAs was modified with a C16 at the 5'- or 3'-end of the sense strand; these were named C16-siRNAs and C16-LoRNAs, respectively. The siRNAs and C16-siRNAs were barely cleaved by Dicer, and their gene-silencing efficacies were not excellent, contrary to our expectations. In contrast, most of the LoRNAs and C16-LoRNAs became substrates of Dicer, and they showed both strong gene-silencing efficacies and high nuclease resistance. Among the LoRNAs, the 25D-C16/27-nt LoRNA, which is composed of a 25-nt sense strand with a 2-nt DNA conjugated with C16 at the 3'-end and a 27-nt antisense strand with a 2-nt overhang at the 3'-end, showed an excellent gene-silencing effect with high cell membrane permeability and strong resistance against nuclease degradation. Additionally, the Lo25D-C16/27RNA excelled in all three aspects, nuclease resistance, cell membrane permeability, and RNAi efficacy, compared with the cholesterol conjugation. We are certain that Lo25D-C16/27RNA can be useful as a new generation of RNAi molecules with which to overcome some of the limitations of RNAi technology.


Subject(s)
Cholesterol/metabolism , Palmitic Acid/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Animals , Base Sequence , DNA/genetics , HeLa Cells , Humans , Intracellular Space/metabolism , RNA, Antisense/genetics
20.
Int J Oncol ; 43(6): 1976-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126491

ABSTRACT

We have demonstrated that an extract from the ripe fruit of Vitex agnus-castus (Vitex) exhibits cytotoxic activities against various types of solid tumor cells, whereas its effects on leukemia cells has not been evaluated to date. In this study, the effects of Vitex and its major component, casticin, on leukemia cell lines, HL-60 and U-937, were investigated by focusing on proliferation, induction of apoptosis and differentiation. Identification and quantitation by NMR spectroscopy showed that casticin accounted for approximate 1% weight of Vitex. Dose-dependent cytotoxicity of Vitex and casticin was observed in both cell lines, and HL-60 cells were more sensitive to the cytotoxicity of Vitex/casticin compared to U-937 cells. Furthermore, compared to unstimulated HL-60 cells, phorbol 12-myristate 13-acetate (PMA)- and 1,25-dihydroxyvitamin D3 (VD3)-differentiated HL-60 cells acquired resistance to Vitex/casticin based on the results from cell viability and apoptosis induction analysis. Since the HL-60 cell line is more immature than the U-937 cell line, these results suggested that the levels of cytotoxicity of Vitex/casticin were largely attributed to the degree of differentiation of leukemia cells; that is, cell lines with less differentiated phenotype were more susceptible than the differentiated ones. RT-PCR analysis demonstrated that PMA upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in HL-60 cells, and that anti-ICAM-1 monoclonal antibody not only abrogated PMA-induced aggregation and adhesion of the cells but also restored its sensitivity to Vitex. These results suggested that ICAM-1 plays a crucial role in the acquired resistance in PMA-differentiated HL-60 cells by contributing to cell adhesion. These findings provide fundamental insights into the clinical application of Vitex/casticin for hematopoietic malignancy.


Subject(s)
Cell Differentiation/drug effects , Drugs, Chinese Herbal/pharmacology , Flavonoids/pharmacology , Leukemia/drug therapy , Adult , Apoptosis/drug effects , Calcitriol/pharmacology , Calcium Channel Agonists/pharmacology , Carcinogens/pharmacology , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm , HL-60 Cells , Humans , Intercellular Adhesion Molecule-1/biosynthesis , Plant Extracts/pharmacology , Tetradecanoylphorbol Acetate/pharmacology , Vitex
SELECTION OF CITATIONS
SEARCH DETAIL
...