Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1232: 121-127, 2020.
Article in English | MEDLINE | ID: mdl-31893403

ABSTRACT

Changes in NIRS signals are related to changes in local cerebral blood flow or oxy-Hb concentration. On the other hand, recent studies have revealed the effect of chewing gum on cognitive performance, stress control etc. which accompanied brain activity in the prefrontal cortex (PFC). However, these relationships are still controversial. To evaluate the chewing effect on PFC, NIRS seems to be a suitable method of imaging such results. When measuring NIRS on PFC, blood volume in superficial tissues (scalp, skin, muscle) might have some affect. The aim of the present study was to clarify the effect of the anterior temporal muscle on NIRS signals during gum chewing. Eight healthy volunteers participated. Two-channel NIRS (HOT-1000, NeU, Japan), which can distinguish total-Hb concentrations in deep tissue and superficial tissue layers, was used. In addition to a conventional optode separation distance of 3.0 cm, Hot 1000 has a short distance of 1.0 cm (NEAR channel) to measure NIRS signals that originate exclusively from surface tissues. NIRS probes were placed at Fp1 and Fp2 in the normal probe setting. The headset was displaced to the left in order to allow the left probe to be placed over the left anterior temporal muscle. In the normal setting, the superficial signal curve shows no notable change; however, the neural (calculated and defined in HOT-1000) and deep curves show an increase during the gum chewing task. At the deviated setting, all three signals show marked changes during the task. Total-Hb concentration in the deviated probe setting is significantly large (p < 0.05) than that of in the normal probe setting. When using gum chewing as a task, it would be better to consider a probe position carefully so that the influence of muscle activity on NIRS signal can be distinguished.


Subject(s)
Mastication , Prefrontal Cortex , Spectroscopy, Near-Infrared , Adult , Hemoglobins/metabolism , Humans , Japan , Pilot Projects , Prefrontal Cortex/physiology , Young Adult
2.
Adv Exp Med Biol ; 977: 199-204, 2017.
Article in English | MEDLINE | ID: mdl-28685446

ABSTRACT

Aging often results in a decline in cognitive function, related to alterations in the prefrontal cortex (PFC) activation. Maintenance of this function in an aging society is an important issue. Some practices/drills, moderate exercise, mastication, and a cognitive task itself could enhance cognitive function. In this validation study, before evaluating the effects of some drills on the elderly, we examined the neural substrate of blood oxygenation changes by the use of four cognitive tasks and fNIRS. Seven healthy volunteers (mean age 25.3 years) participated in this study. Each task session was designed in a block manner; 4 periods of rests (30 s) and 3 blocks of four tasks (30 s). The tasks used were: a computerized Stroop test, a Wisconsin Card Sorting Test, a Sternberg working memory paradigm, and a semantic verbal fluency task. The findings of the study are that all four tasks activated PFC to some extent, without laterality except for the verbal fluency task. The results confirm that NIRS is suitable for measurement of blood oxygenation changes in frontal brain areas that are associated with all four cognitive tasks.


Subject(s)
Cerebrovascular Circulation/physiology , Cognition/physiology , Oxygen Consumption/physiology , Oxygen/metabolism , Prefrontal Cortex/blood supply , Prefrontal Cortex/metabolism , Adult , Brain Mapping/methods , Functional Laterality/physiology , Humans , Memory, Short-Term/physiology , Neuropsychological Tests , Semantics , Spectroscopy, Near-Infrared , Speech/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...