Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-13, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37317953

ABSTRACT

Long-term monitoring and treatment of landfill leachate (LFL) and landfill gas (LFG) is required until landfilled municipal solid waste (MSW) is sufficiently stabilized and post-closure care can be terminated. Monitoring data of methane (CH4) emissions in LFG from a marine landfill over 30 years were compared with the IPCC first order decay (FOD) model estimates. The observed changes in CH4 showed a similar attenuation trend to the estimates, but the observed CH4 emissions were only about 30% of the estimate over 30 years; LFL is considered to be another pathway for organic carbon to be released to the environment, but the total organic carbon in discharged LFL was only about 0.2% of CH4 carbon in LFG emission over the same period. The increase in the CO2/CH4 ratio in LFG over time suggests that the discrepancy between estimated and observed emissions is due to methane oxidation in the overlying soil, in addition to the high coefficient values used in the FOD model. Total organic carbon (TOC) in LFL discharged as effluent reached a maximum value in the early stages of the landfill and gradually decreased, but only to about one-third of the maximum value after more than 30 years and a decrease in the amount of effluent. As incineration of MSW is expected to reduce organic carbon and nitrogen, the CH4 reduction effect of incineration of business and household waste and sewage sludge was investigated using FOD model estimates.

2.
Biomolecules ; 4(2): 390-401, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24970221

ABSTRACT

Uranium is one of the most important metal resources, and the technology for the recovery of uranyl ions (UO22+) from aqueous solutions is required to ensure a semi-permanent supply of uranium. The NikR protein is a Ni2+-dependent transcriptional repressor of the nickel-ion uptake system in Escherichia coli, but its mutant protein (NikRm) is able to selectively bind uranyl ions in the interface of the two monomers. In this study, NikRm protein with ability to adsorb uranyl ions was displayed on the cell surface of Saccharomyces cerevisiae. To perform the binding of metal ions in the interface of the two monomers, two metal-binding domains (MBDs) of NikRm were tandemly fused via linker peptides and displayed on the yeast cell surface by fusion with the cell wall-anchoring domain of yeast α-agglutinin. The NikRm-MBD-displaying yeast cells with particular linker lengths showed the enhanced adsorption of uranyl ions in comparison to the control strain. By treating cells with citrate buffer (pH 4.3), the uranyl ions adsorbed on the cell surface were recovered. Our results indicate that the adsorption system by yeast cells displaying tandemly fused MBDs of NikRm is effective for simple and concentrated recovery of uranyl ions, as well as adsorption of uranyl ions.


Subject(s)
Escherichia coli Proteins/genetics , Genetic Engineering , Mutant Proteins/genetics , Repressor Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Uranium/chemistry , Uranium/metabolism , Adsorption , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Uranium/isolation & purification
3.
J Am Chem Soc ; 136(19): 7026-37, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24749985

ABSTRACT

We present a comprehensive study of the synthesis, heat capacity, crystal structures, UV-vis-NIR and mid-IR spectra, DFT calculations, and magnetic and electrical properties of a one-dimensional (1D) rhodium(I)-semiquinonato complex, [Rh(3,6-DBSQ-4,5-(MeO)2)(CO)2]∞ (3), where 3,6-DBSQ-4,5-(MeO)2(•-) represents 3,6-di-tert-butyl-4,5-dimethoxy-1,2-benzosemiquinonato radical anion. The compound 3 comprises neutral 1D chains of complex molecules stacked in a staggered arrangement with short Rh-Rh distances of 3.0796(4) and 3.1045(4) Å at 226 K and exhibits unprecedented bistable multifunctionality with respect to its magnetic and conductive properties in the temperature range of 228-207 K. The observed bistability results from the thermal hysteresis across a first-order phase transition, and the transition accompanies the exchange of the interchain C-H···O hydrogen-bond partners between the semiquinonato ligands. The strong overlaps of the complex molecules lead to unusually strong ferromagnetic interactions in the low-temperature (LT) phase. Furthermore, the magnetic interactions in the 1D chain drastically change from strongly ferromagnetic in the LT phase to antiferromagnetic in the room-temperature (RT) phase with hysteresis. In addition, the compound 3 exhibits long-range antiferromagnetic ordering between the ferromagnetic chains and spontaneous magnetization because of spin canting (canted antiferromagnetism) at a transition temperature T(N) of 14.2 K. The electrical conductivity of 3 at 300 K is 4.8 × 10(-4) S cm(-1), which is relatively high despite Rh not being in a mixed-valence state. The temperature dependence of electrical resistivity also exhibits a clear hysteresis across the first-order phase transition. Furthermore, the ferromagnetic LT phase can be easily stabilized up to RT by the application of a relatively weak applied pressure of 1.4 kbar, which reflects the bistable characteristics and demonstrates the simultaneous control of multifunctionality through external perturbation.

4.
Appl Microbiol Biotechnol ; 96(1): 153-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22543451

ABSTRACT

By cell surface display of ModE protein that is a transcriptional regulator of operons involved in the molybdenum metabolism in Escherichia coli, we have constructed a molybdate-binding yeast (Nishitani et al., Appl Microbiol Biotechnol 86:641-648, 2010). In this study, the binding specificity of the molybdate-binding domain of the ModE protein displayed on yeast cell surface was improved by substituting the amino acids involved in oxyanion binding with other amino acids. Although the displayed S126T, R128E, and T163S mutant proteins adsorbed neither molybdate nor tungstate, the displayed ModE mutant protein (T163Y) abolished only molybdate adsorption, exhibiting the specific adsorption of tungstate. The specificity of the displayed ModE mutant protein (T163Y) for tungstate was increased by approximately 9.31-fold compared to the displayed wild-type ModE protein at pH 5.4. Therefore, the strategy of protein design and its cell surface display is effective for the molecular breeding of bioadsorbents with metal-specific adsorption ability based on a single species of microorganism without isolation from nature.


Subject(s)
Adsorption , Cell Surface Display Techniques , Escherichia coli Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Tungsten Compounds/metabolism , Escherichia coli Proteins/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/genetics
5.
Appl Microbiol Biotechnol ; 86(2): 641-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19894045

ABSTRACT

In modern industrial society, molybdenum is one of the important metals for development of the industry of rare metals. It is important to recycle the rare metals from wastes because they are technically and economically difficult to be dug and be purified, and they exist in only a few regions in the world. In this study, ModE protein derived from Escherichia coli, which is a molybdate-dependent transcriptional regulator with the ability to bind molybdate as a form of soluble molybdenum, was displayed on the yeast cell surface by alpha-agglutinin-based cell surface display system for the adsorption and recovery of molybdate. Displayed ModE, confirmed by immunofluorescence labeling, caught molybdate more preferably at pH 3.0 than at basic pH. Yeast cells displaying C-terminal domain of ModE, which lacks N-terminal DNA binding domain, more effectively adsorbed molybdate than those displaying full-length ModE, suggesting that the deletion of the domain unrelated to metal binding enhanced the binding ability. Our results indicated that the adsorption system on cell surface of yeast cells displaying ModE is effective not only for adsorption of molybdate as a rare metal bioadsorbent but also for the easy recovery of molybdate located on the cell surface.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Molybdenum/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Hydrogen-Ion Concentration , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion
6.
Opt Express ; 16(15): 10956-61, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18648409

ABSTRACT

All-optical manipulation of signals carried by lightwaves is attractive because controlling the light directly can be more efficient, allows a multitude of signal formats, and can also prove most cost effective. We implemented a novel scheme for ultrafast optical switching using very small control energy that relies on the use of a saturated fiber-optic parametric amplifier. Approximately 19 aJ (150 photons) of control pulse energy was needed for 50% extinction of the signal which is three to four orders of magnitude smaller than in other all-optical switching demonstrations. This allows the consideration of novel practical approaches to implement all-optical switching devices and all-optical subsystems for telecommunications and other applications.


Subject(s)
Amplifiers, Electronic , Computer-Aided Design , Fiber Optic Technology/instrumentation , Equipment Design , Equipment Failure Analysis , Nonlinear Dynamics , Optical Fibers
7.
Opt Express ; 15(24): 15812-7, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-19550865

ABSTRACT

We propose and demonstrate an optical coding scheme using optical interconnection for a photonic analog-to-digital conversion. It allows us to convert a multi-power level signal into a multiple-bit binary code so as to detect it in a bit-parallel format by binary photodiode array. The proposed optical coding is executed after optical quantization using self-frequency shift. Optical interconnection based on a binary conversion table generates a multiple-bit binary code by appropriate allocation of a level identification signal which is provided as a result of optical quantization. Experimental results show that 8-levels analog pulses are converted into 3-bit parallel binary codes.

8.
Opt Express ; 15(25): 17025-31, 2007 Dec 10.
Article in English | MEDLINE | ID: mdl-19550994

ABSTRACT

An all-optical M-ary amplitude shift keying (ASK) signal demultiplexer is proposed and demonstrated. It allowed us to seamlessly demultiplex a high bit-rate optical M-ary ASK signal into on-off keying (OOK) signals without O/E conversion. It is composed of multilevel thresholding using self-frequency shift and OOK signal generation using optical interconnection. A level identification signal is provided as a result of multilevel thresholding and it is fed to an optical interconnection circuit which can generate corresponding OOK signals. We demonstrate the quadrature ASK signal demultiplexing at 100 Gsymbol/s and its error free operation at 10 Gb/s.

SELECTION OF CITATIONS
SEARCH DETAIL
...