Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38821503

ABSTRACT

Zrt/Irt-like protein 8 (ZIP8), which is a zinc transporter, plays a pivotal role as a manganese transporter. Recent studies have shown that a ZIP8 SNP (rs13107325 C→T, A391T) is associated with multiple diseases, likely by causing systemic Mn deficiency. However, the underlying molecular mechanisms remain unclear. We attempted to address this issue in cell-based experiments using Madin-Darby canine kidney cells stably expressing ZIP8 WT or the A391T SNP mutant under the control of the Tet-regulatable promoter. We showed that the A391T mutant lost the property of Mn-responsive accumulation on the cell surface, which was observed in WT ZIP8. We also showed that the loss of Mn-responsive accumulation of A391T mutant was associated with its reduced Mn uptake, compared to WT ZIP8, in the Mn uptake assay using the radioisotope 54Mn. Our results potentially explain how the ZIP8 A391T substitution is associated with disease pathogenesis caused by Mn deficiency.

2.
FASEB J ; 38(7): e23605, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38597508

ABSTRACT

Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.


Subject(s)
Manganese , Zinc , Animals , Zinc/metabolism , Manganese/metabolism , Copper/metabolism , Homeostasis , Mammals/metabolism
3.
Methods Enzymol ; 687: 207-239, 2023.
Article in English | MEDLINE | ID: mdl-37666633

ABSTRACT

Measuring the cellular zinc content and examining the alteration of zinc status are critical for investigating the cellular homeostasis and dynamics of zinc and its involvement in patho-physiological functions. Many Zrt- and Irt-related protein (ZIP) transporters uptake zinc from the extracellular space. Among Zn transporters (ZNTs), ZNT1 effluxes cytosolic zinc. As cytosolic zinc-binding proteins, metallothioneins (MTs) also contribute to the control of cellular zinc homeostasis. Systemic and cellular zinc homeostasis is considered to be maintained by balancing expression and functional activities of these proteins. The zinc transport ability of ZIPs is typically measured by evaluating cellular zinc content with various zinc-detection methods and systems. Many small-molecule fluorescent probes and fluorescence resonance energy transfer-based protein sensors have been exploited for this purpose. Although powerful analytical methods using special instruments have been developed to quantify zinc, they are often not easily accessible. Here, we present a simplified and inexpensive method to estimate the zinc transport ability of ZIP transporters using the expression responses of ZNT1 and MT. This protocol should be effective in several applications because ZNT1 and MT expression are easily evaluated by immunoblotting and immunofluorescence staining as basic biochemical techniques available in most laboratories. This method is advantageous for examining the relative zinc status or alterations mediated by expression changes of ZIPs in cells cultured in normal medium without zinc supplementation. As zinc is an essential micronutrient, extensive research is necessary to improve dietary zinc absorption to promote health. Therefore, we also propose a simple screening method of foods to improve zinc absorption as an application of measuring ZIP-mediated MT expression.


Subject(s)
Health Promotion , Zinc , Biological Transport , Cytosol
4.
J Biol Chem ; 299(8): 105009, 2023 08.
Article in English | MEDLINE | ID: mdl-37406814

ABSTRACT

Selenoprotein P (SeP, encoded by the SELENOP gene) is a plasma protein that contains selenium in the form of selenocysteine residues (Sec, a cysteine analog containing selenium instead of sulfur). SeP functions for the transport of selenium to specific tissues in a receptor-dependent manner. Apolipoprotein E receptor 2 (ApoER2) has been identified as a SeP receptor. However, diverse variants of ApoER2 have been reported, and the details of its tissue specificity and the molecular mechanism of its efficiency remain unclear. In the present study, we found that human T lymphoma Jurkat cells have a high ability to utilize selenium via SeP, while this ability was low in human rhabdomyosarcoma cells. We identified an ApoER2 variant with a high affinity for SeP in Jurkat cells. This variant had a dissociation constant value of 0.67 nM and a highly glycosylated O-linked sugar domain. Moreover, the acidification of intracellular vesicles was necessary for selenium transport via SeP in both cell types. In rhabdomyosarcoma cells, SeP underwent proteolytic degradation in lysosomes and transported selenium in a Sec lyase-dependent manner. However, in Jurkat cells, SeP transported selenium in Sec lyase-independent manner. These findings indicate a preferential selenium transport pathway involving SeP and high-affinity ApoER2 in a Sec lyase-independent manner. Herein, we provide a novel dynamic transport pathway for selenium via SeP.


Subject(s)
Lyases , Selenium , Humans , Lyases/metabolism , Selenium/metabolism , Selenocysteine/genetics , Selenocysteine/metabolism , Selenoprotein P/genetics , Selenoprotein P/metabolism , Selenoproteins , Jurkat Cells
5.
Commun Biol ; 6(1): 403, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072620

ABSTRACT

Tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are essential for pigmentation. They are generally classified as type-3 copper proteins, with binuclear copper active sites. Although there is experimental evidence for a copper cofactor in TYR, delivered via the copper transporter, ATP7A, the presence of copper in TYRP1 and TYRP2 has not been demonstrated. Here, we report that the expression and function of TYRP1 requires zinc, mediated by ZNT5-ZNT6 heterodimers (ZNT5-6) or ZNT7-ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in hypopigmentation in medaka fish and human melanoma cells, and is accompanied by immature melanosomes and reduced melanin content, as observed in TYRP1 dysfunction. The requirement of ZNT5-6 and ZNT7 for TYRP1 expression is conserved in human, mouse, and chicken orthologs. Our results provide novel insights into the pigmentation process and address questions regarding metalation in tyrosinase protein family.


Subject(s)
Cation Transport Proteins , Secretory Pathway , Animals , Mice , Humans , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Zinc/metabolism , Copper/metabolism , Pigmentation , Membrane Glycoproteins/metabolism , Oxidoreductases/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism
6.
Sci Rep ; 12(1): 7334, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513474

ABSTRACT

The zinc homeostatic proteins Zn transporter 1 (ZNT1) and metallothionein (MT) function in dampening increases in cytosolic zinc concentrations. Conversely, the expression of ZNT1 and MT is expected to be suppressed during decreases in cytosolic zinc concentrations. Thus, ZNT1/MT homeostatic responses are considered to be essential for maintaining cellular zinc homeostasis because cellular zinc concentrations are readily altered by changes in the expression of several Zrt-/Irt-like proteins (ZIPs) under both physiological and pathological conditions. However, this notion remains to be tested experimentally. Here, we investigated the aforementioned homeostatic process by analyzing ZNT1 and MT protein expression in response to ZIP expression. Overexpression of cell-surface-localized ZIPs, such as ZIP4 and ZIP5, increased the cellular zinc content, which caused an increase in the expression of cell-surface ZNT1 and cytosolic MT in the absence of zinc supplementation in the culture medium. By contrast, elimination of the overexpressed ZIP4 and ZIP5 resulted in decreased expression of ZNT1 but not MT, which suggests that differential regulation of ZNT1 and MT expression at the protein level underlies the homeostatic responses necessary for zinc metabolism under certain conditions. Moreover, increased expression of apically localized ZIP4 facilitated basolateral ZNT1 expression in polarized cells, which indicates that such a coordinated expression mechanism is crucial for vectorial transcellular transport. Our results provide novel insights into the physiological maintenance of cellular zinc homeostasis in response to alterations in cytosolic zinc concentrations caused by changes in the expression of ZIPs.


Subject(s)
Metallothionein , Zinc , Homeostasis , Membrane Proteins/metabolism , Membrane Transport Proteins , Metallothionein/genetics , Metallothionein/metabolism , Zinc/metabolism
7.
Bioorg Med Chem Lett ; 30(17): 127400, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738964

ABSTRACT

Glucose transporter 2 (GLUT2) is involved in glucose uptake by hepatocytes, pancreatic beta cells, and absorptive cells in the intestine and proximal tubules in the kidney. Pancreatic GLUT2 also plays an important role in the mechanism of glucose-stimulated insulin secretion. In this study, novel Fluorine-18-labeled streptozotocin (STZ) derivatives were synthesized to serve as glycoside analogs for in-vivo GLUT2 imaging. Fluorine was introduced to hexyl groups at the 3'-positions of the compounds, and we aimed to synthesize compounds that were more stable than STZ. The nitroso derivatives exhibited relatively good stability during purification and purity analysis after radiosynthesis. We then evaluated the compounds in PET imaging and ex-vivo biodistribution studies. We observed high levels of radioactivity in the liver and kidney, which indicated accumulation in these organs within 5 min of administration. In contrast, the denitroso derivatives accumulated only in the kidney and bladder shortly after administration. Compounds with nitroso groups are thus expected to accumulate in GLUT2-expressing organs, and the presence of a nitroso group is essential for in-vivo GLUT2 imaging.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Streptozocin/chemistry , Animals , Fluorine Radioisotopes/chemistry , Glucose Transporter Type 2/metabolism , Kinetics , Mice , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Streptozocin/chemical synthesis , Streptozocin/metabolism , Tissue Distribution
8.
J Biol Chem ; 295(17): 5669-5684, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32179649

ABSTRACT

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.


Subject(s)
Alkaline Phosphatase/metabolism , Cation Transport Proteins/metabolism , Enzyme Activation , Zinc/metabolism , Animals , Avian Proteins/metabolism , Cell Line , Chickens , Golgi Apparatus/metabolism , Humans , Protein Multimerization
9.
J Biol Chem ; 294(43): 15686-15697, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31471319

ABSTRACT

Zinc transporter 1 (ZNT1) is the only zinc transporter predominantly located on the plasma membrane, where it plays a pivotal role exporting cytosolic zinc to the extracellular space. Numerous studies have focused on the physiological and pathological functions of ZNT1. However, its biochemical features remain poorly understood. Here, we investigated the regulation of ZNT1 expression in human and vertebrate cells, and found that ZNT1 expression is posttranslationally regulated by cellular zinc status. We observed that under zinc-sufficient conditions, ZNT1 accumulates on the plasma membrane, consistent with its zinc efflux function. In contrast, under zinc-deficient conditions, ZNT1 molecules on the plasma membrane were endocytosed and degraded through both the proteasomal and lysosomal pathways. Zinc-responsive ZNT1 expression corresponded with that of metallothionein, supporting the idea that ZNT1 and metallothionein cooperatively regulate cellular zinc homeostasis. ZNT1 is N-glycosylated on Asn299 in the extracellular loop between transmembrane domains V and VI, and this appears to be involved in the regulation of ZNT1 stability, as nonglycosylated ZNT1 is more stable. However, this posttranslational modification had no effect on ZNT1's ability to confer cellular resistance against high zinc levels or its subcellular localization. Our results provide molecular insights into ZNT1-mediated regulation of cellular zinc homeostasis, and indicate that the control of cellular and systemic zinc homeostasis via dynamic regulation of ZNT1 expression is more sophisticated than previously thought.


Subject(s)
Cation Transport Proteins/metabolism , Cell Membrane/metabolism , Zinc/metabolism , Amino Acid Sequence , Animals , Asparagine/metabolism , Cation Transport Proteins/chemistry , Cell Line , Chickens , Endocytosis , Glycosylation , Lysosomes/metabolism , Mice , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Proteolysis , Subcellular Fractions/metabolism , Zinc/deficiency
10.
J Nutr Sci Vitaminol (Tokyo) ; 64(1): 1-7, 2018.
Article in English | MEDLINE | ID: mdl-29491267

ABSTRACT

Essential trace elements play pivotal roles in numerous structural and catalytic functions of proteins. Adequate intake of essential trace elements from the daily diet is indispensable to the maintenance of health, and their deficiency leads to a variety of conditions. However, excessive amounts of these trace elements may be highly toxic, and in some cases, may cause damage by the production of harmful reactive oxygen species. Homeostatic dysregulation of their metabolism increases the risk of developing diseases. Specific transport proteins that facilitate influx or efflux of trace elements play key roles in maintaining the homeostasis. Recent elucidation of their crucial functions significantly facilitated our understanding of the molecular mechanisms of iron (Fe), copper (Cu), and zinc (Zn) absorption in the small intestine. This paper summarizes their absorption mechanisms, with a focus on indispensable functions of the molecules involved in it, and briefly discusses the mechanisms of homeostatic control of each element at the cellular and systemic levels.


Subject(s)
Copper/pharmacokinetics , Iron/pharmacokinetics , Zinc/pharmacokinetics , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Homeostasis , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , Reactive Oxygen Species/metabolism
11.
Nat Commun ; 8(1): 1658, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29162828

ABSTRACT

Selenoprotein P (SeP) functions as a selenium (Se)-supply protein. SeP is identified as a hepatokine, promoting insulin resistance in type 2 diabetes. Thus, the suppression of Se-supply activity of SeP might improve glucose metabolism. Here, we develop an anti-human SeP monoclonal antibody AE2 as with neutralizing activity against SeP. Administration of AE2 to mice significantly improves glucose intolerance and insulin resistance that are induced by human SeP administration. Furthermore, excess SeP administration significantly decreases pancreas insulin levels and high glucose-induced insulin secretion, which are improved by AE2 administration. Epitope mapping reveals that AE2 recognizes a region of human SeP adjacent to the first histidine-rich region (FHR). A polyclonal antibody against the mouse SeP FHR improves glucose intolerance and insulin secretion in a mouse model of diabetes. This report describes a novel molecular strategy for the development of type 2 diabetes therapeutics targeting SeP.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Insulin/metabolism , Selenoprotein P/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Humans , Insulin Secretion , Mice , Mice, Inbred C57BL , Selenoprotein P/chemistry , Selenoprotein P/genetics
12.
Biochem J ; 473(17): 2611-21, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27303047

ABSTRACT

Secretory and membrane-bound zinc-requiring enzymes are thought to be activated by binding zinc in the early secretory pathway. One such enzyme, tissue-non-specific alkaline phosphatase (TNAP), is activated through a two-step mechanism, via protein stabilization and subsequent enzyme activation through metalation, by ZnT5-ZnT6 heterodimers or ZnT7 homodimers. However, little is known about the molecular basis underlying the activation process. In the present study, we found that the di-proline motif (PP-motif) in luminal loop 2 of ZnT5 and ZnT7 is important for TNAP activation. TNAP activity was significantly reduced in cells lacking ZnT5-ZnT6 heterodimers and ZnT7 homodimers [triple knockout (TKO) cells]. The decreased TNAP activity was restored by expressing hZnT5 with hZnT6 or hZnT7, but significantly less so (almost 90% less) by expressing mutants thereof in which the PP-motif was mutated to alanine (PP-AA). In TKO cells, overexpressed hTNAP was not completely activated, and it was converted less efficiently into the holo form by expressing a PP-AA mutant of hZnT5 with hZnT6, whose defects were not restored by zinc supplementation. The zinc transport activity of hZnT7 was not significantly impaired by the PP-AA mutation, indicating that the PP-motif is involved in the TNAP maturation process, although it does not control zinc transport activity. The PP-motif is highly conserved in ZnT5 and ZnT7 orthologues, and its importance for TNAP activation is conserved in the Caenorhabditis elegans hZnT5 orthologue CDF5. These results provide novel molecular insights into the TNAP activation process in the early secretory pathway.


Subject(s)
Carrier Proteins/metabolism , Amino Acid Sequence , Animals , Carrier Proteins/chemistry , Cell Line , Chickens
13.
Pediatr Res ; 80(4): 586-94, 2016 10.
Article in English | MEDLINE | ID: mdl-27304099

ABSTRACT

BACKGROUND: Infants are vulnerable to zinc deficiency. Thus, abnormally low breast milk zinc levels cause transient neonatal zinc deficiency (TNZD) in breast-fed infants. TNZD has been considered to be rare because of a paucity of citations in the published literature. However, recent studies of affected mothers identified four missense mutations in the solute carrier family 30 member 2 gene (SLC30A2), which encodes the zinc transporter, ZnT2. METHODS: Genetic analyses of SLC30A2/ZnT2 in three Japanese mothers secreting low-zinc milk (whose infants developed TNZD) were performed. The effects of identified mutations were examined in a cell-based assay. Furthermore, 31 single-nucleotide polymorphisms (SNPs) in SLC30A2/ZnT2 were evaluated for their potential involvement in low-zinc levels in milk. RESULTS: Each mother had a different novel heterozygous mutation in SLC30A2/ZnT2. One mutation reduced splicing efficiency of the SLC30A2/ZnT2 transcript, and all ZnT2 mutants were defective in zinc transport and were unstable in cells. Moreover, four SNPs caused a significant loss of zinc-transport activity, similar to that in disease-causing ZnT2 mutants. CONCLUSION: Our results indicate that many SLC30A2/ZnT2 mutations cause or potentially cause TNZD. Genetic information concerning TNZD pathogenesis is limited, and our results suggest that the TNZD frequency may be higher than previously thought.


Subject(s)
Cation Transport Proteins/genetics , Growth Disorders/genetics , Milk, Human/chemistry , Mutation, Missense , Zinc/deficiency , Alternative Splicing , Biological Transport , Breast Feeding , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Infant, Newborn , Japan , Male , Mothers , Mutation , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Zinc/chemistry
14.
Biochem Biophys Res Commun ; 477(1): 40-46, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27270032

ABSTRACT

Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation.


Subject(s)
Autophagy/drug effects , Benzylisoquinolines/pharmacology , Hepatic Stellate Cells/drug effects , Lipid Metabolism/drug effects , Cell Line , Humans
15.
J Biol Chem ; 291(28): 14773-87, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27226609

ABSTRACT

Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn(43), which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys(52) and Leu(242) in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter.


Subject(s)
Cation Transport Proteins/metabolism , Manganese/metabolism , Amino Acid Sequence , Animals , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cell Line , Gene Knockdown Techniques , Sequence Homology, Amino Acid
16.
Arch Biochem Biophys ; 611: 37-42, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27046342

ABSTRACT

In humans, about 1000 enzymes are estimated to bind zinc. In most of these enzymes, zinc is present at the active site; thus, these enzymes are functional as "zinc-requiring enzymes". Of these zinc-requiring enzymes, zinc-requiring ectoenzymes (defined as secretory, membrane-bound, and organelle-resident enzymes) have received much attention because of their important physiological functions, involvement in a number of diseases, and potential applications as therapeutic targets for diseases. Zinc-requiring ectoenzymes may become active by coordinating zinc at their active site during the secretory process, which requires elaborate control of zinc mobilization from the extracellular milieu to the cytosol and then lumen in the early secretory pathway. Therefore, zinc transporters should properly maintain the process at systemic, cellular, and subcellular levels by mobilizing zinc across biological membranes. However, few studies have examined the mechanisms underlying this process. In this review, current knowledge of the activation process of zinc-requiring ectoenzymes by ZnT zinc transporters in the early secretory pathway is briefly reviewed at the molecular level, with a focus on tissue-nonspecific alkaline phosphatase. Moreover, we also discuss whether zinc-chaperone proteins function during the activation of these enzymes.


Subject(s)
Carrier Proteins/metabolism , Secretory Pathway , Zinc/chemistry , Animals , Catalytic Domain , Cation Transport Proteins/metabolism , Cell Membrane/metabolism , Cytoplasm/metabolism , Cytosol/metabolism , Dimerization , Endoplasmic Reticulum/metabolism , Enzymes/metabolism , Humans , Molecular Chaperones/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...