Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(5): 958-968.e5, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38335960

ABSTRACT

Subzero temperatures are often lethal to plants. Many temperate herbaceous plants have a cold acclimation mechanism that allows them to sense a drop in temperature and prepare for freezing stress through accumulation of soluble sugars and cryoprotective proteins. As ice formation primarily occurs in the apoplast (the cell wall space), cell wall functional properties are important for plant freezing tolerance. Although previous studies have shown that the amounts of constituent sugars of the cell wall, in particular those of pectic polysaccharides, are altered by cold acclimation, the significance of this change during cold acclimation has not been clarified. We found that ß-1,4-galactan, which forms neutral side chains of the acidic pectic rhamnogalacturonan-I, accumulates in the cell walls of Arabidopsis and various freezing-tolerant vegetables during cold acclimation. The gals1 gals2 gals3 triple mutant, which has reduced ß-1,4-galactan in the cell wall, exhibited impaired freezing tolerance compared with wild-type Arabidopsis during initial stages of cold acclimation. Expression of genes involved in the galactan biosynthesis pathway, such as galactan synthases and UDP-glucose 4-epimerases, was induced during cold acclimation in Arabidopsis, explaining the galactan accumulation. Cold acclimation resulted in a decrease in extensibility and an increase in rigidity of the cell wall in the wild type, whereas these changes were not observed in the gals1 gals2 gals3 triple mutant. These results indicate that the accumulation of pectic ß-1,4-galactan contributes to acquired freezing tolerance by cold acclimation, likely via changes in cell wall mechanical properties.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Freezing , Arabidopsis Proteins/metabolism , Plants/metabolism , Cell Wall/metabolism , Galactans/metabolism , Acclimatization/genetics , Sugars/metabolism , Cold Temperature , Gene Expression Regulation, Plant
2.
Article in English | MEDLINE | ID: mdl-19644224

ABSTRACT

Here, we report the recovery of cell nuclei from 14,000-15,000 years old mammoth tissues and the injection of those nuclei into mouse enucleated matured oocytes by somatic cell nuclear transfer (SCNT). From both skin and muscle tissues, cell nucleus-like structures were successfully recovered. Those nuclei were then injected into enucleated oocytes and more than half of the oocytes were able to survive. Injected nuclei were not taken apart and remained its nuclear structure. Those oocytes did not show disappearance of nuclear membrane or premature chromosome condensation (PCC) at 1 hour after injection and did not form pronuclear-like structures at 7 hours after injection. As half of the oocytes injected with nuclei derived from frozen-thawed mouse bone marrow cells were able to form pronuclear-like structures, it might be possible to promote the cell cycle of nuclei from ancient animal tissues by suitable pre-treatment in SCNT. This is the first report of SCNT with nuclei derived from mammoth tissues.


Subject(s)
Cell Nucleus , Elephants , Fossils , Nuclear Transfer Techniques , Oocytes/cytology , Animals , Female , Injections , Mice , Molecular Sequence Data , Radiometric Dating , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...