Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791221

ABSTRACT

Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.


Subject(s)
Antibodies, Monoclonal , Bothrops , Peptides , Serine Proteases , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Peptides/chemistry , Peptides/pharmacology , Serine Proteases/chemistry , Serine Proteases/metabolism , Antivenins/chemistry , Antivenins/immunology , Antivenins/pharmacology , Complementarity Determining Regions/chemistry , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/immunology , Crotalid Venoms/enzymology , Crotalid Venoms/chemistry , Amino Acid Sequence , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
2.
Int J Biol Macromol ; 253(Pt 6): 127279, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37806411

ABSTRACT

Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.


Subject(s)
Bothrops , Crotalid Venoms , Mice , Animals , Proteome , Multiomics , Metalloproteases/metabolism , Snake Venoms/toxicity , Peptides , Plasma/metabolism , Kidney/metabolism , Bothrops/metabolism , Crotalid Venoms/toxicity , Crotalid Venoms/metabolism
3.
Biochimie ; 214(Pt B): 1-10, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37315762

ABSTRACT

Snake venom protein synthesis undergoes finely regulated processes in the specialized secretory epithelium within the venom gland. Such processes occur within a defined period in the cell and at specific cellular locations. Thus, the determination of subcellular proteomes allows the characterization of protein groups for which the site may be relevant to their biological roles, thereby allowing the deconvolution of complex biological circuits into functional information. In this regard, we performed subcellular fractionation of proteins from B. jararaca venom gland, focusing on nuclear proteins since this cellular compartment comprises key effectors that shape gene expression. Our results provided a snapshot of B. jararaca's subcellular venom gland proteome and pointed to a 'conserved' proteome core among different life stages (newborn and adult) and between sexes (adult male and female). Overall, the top 15 highly abundant proteins identified in B. jararaca venom glands mirrored the panel of highly expressed genes in human salivary glands. Therefore, the expression profile observed for such a protein set could be considered a conserved core signature of salivary gland secretory epithelium. Moreover, the newborn venom gland displayed a unique expression signature of transcription factors involved in regulating transcription and biosynthetic processes and may mirror biological constraints of the ontogenetic development of B. jararaca, contributing to venom proteome diversity.


Subject(s)
Bothrops , Crotalid Venoms , Animals , Humans , Infant, Newborn , Female , Male , Proteome/metabolism , Bothrops/metabolism , Transcription Factors/metabolism , Nuclear Proteins/metabolism
4.
Infect Genet Evol ; 107: 105390, 2023 01.
Article in English | MEDLINE | ID: mdl-36473637

ABSTRACT

Zika virus (ZIKV) may cause febrile illness and neurological damage, such as microcephaly in fetuses. ZIKV is transmitted to humans by Aedes aegypti, a nearly cosmopolitan mosquito. Understanding the virus-vector molecular interactions has been promising to enhance the knowledge towards disease mitigation. Since ZIKV infection alters gene physiology of mosquitoes, we examined the expression profile of ZIKV-infected Ae. aegypti by several approaches to identify genes altered by viral infection. Transcriptomics were performed by comparing between ZIKV-infected and uninfected Ae. aegypti females, which revealed some differentially expressed genes. Most of these genes appear to be involved with immune response as evidenced by an interactome analysis, and a prominent finding was a calreticulin-like (CRT) gene, which was upregulated during the infection. Expression of CRT was also experimentally quantified by qPCR, however, it revealed no significant differences between infected and uninfected females. Instead, expression levels were highly variable among individuals and negatively correlated to viral load. We also tested the possibility of this gene to be silenced, but the double-stranded RNA did not reduce CRT expression, and actually increased the inter-individuals' expressional variability. Present results differed from our original hypothesis of upregulation by infection. They also diverged between them (comparing qPCR to Transcriptomics) and from the literature which reported augmented CRT levels in Aedes species during viral infection. Present case probably underlies a more complex virus-host interaction system than we expected. Regulation of this gene seems not to be a linear correlation between expression and viremy. As infection takes place, a complex homeostatic mechanism may act to prevent expression and other cellular tasks from drifting. It is also possible that CRT expression is simply randomly disturbed by viral infection. Taken together, results show that CRT expression profile during ZIKV infection is complex and requires different investigative approaches to be understood. Studies focused on the biochemical function of CRT protein and on its role in the native mosquito metabolic network could unravel how it is actually influenced by ZIKV. Current work contributes more by getting incidental findings and by posing new hypotheses than by answering the original questions.


Subject(s)
Aedes , Calreticulin , Zika Virus Infection , Animals , Female , Aedes/genetics , Aedes/virology , Calreticulin/genetics , Gene Expression Profiling , Zika Virus Infection/genetics
5.
J Proteome Res ; 21(11): 2783-2797, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36260604

ABSTRACT

Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.


Subject(s)
Spider Venoms , Spiders , Animals , Male , Female , Spiders/genetics , Spiders/metabolism , Spider Venoms/genetics , Spider Venoms/chemistry , Spider Venoms/metabolism , Cysteine/metabolism , Proteomics/methods , Mass Spectrometry/methods , Proteome/genetics , Proteome/metabolism , Peptides/analysis
6.
Theriogenology ; 188: 156-162, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35689945

ABSTRACT

Advances in Artificial Reproductive Technologies (ARTs) in bovine embryos to produce cloned pregnancies have been developed in the last years, however high pregnancy losses rates still present. Those rates are associated to placental morphology alterations that are majorly focused on extracellular matrix (ECM) alterations and consequently placentome hyperplasia, increased trophoblast cell migration and vascular defects. Herein, we aimed to search, at protein level, pathways altered by ART that can modify the placental development harmony. For this, we used 4-month-old control (n = 3), SDS-decellularized (n = 3) and cloned (n = 3) cotyledons for proteomic analysis. Samples were grouped by condition and were washed, lysed, urea-reduced, acetone-precipitated, DTT-educed, iodoacetamide-alkylated, trypsin digested, and C-18 column purified. At the end, 3 µg protein were loaded in Orbitrap Fusion Lumos spectrometer (ThermoScientific). Generated spectra were exported to MaxQuant software (v1.6.10.43) to produce the protein list of each sample, and the LFQ intensity were statistically analyzed by Inferno software (v.1.1.6970). After this, proteins related to ECM and cellular junction ontologies were filtered and manually annotated using DAVID Bioinformatics Resources 6.8. From 2577 identified protein sequences by MaxQuant software, 165 (7.1%) were filtered by selected ontologies. We found 10 proteins (B2M, COL6A6, FERMT3, LGALS3BP, NIBAN2, PDLIM5, PON1, PRP9, RASIP1 and SPARC) upregulated in clone, when compared to control condition. The ten pathways that enriched more proteins were: focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway, protein digestion and absorption, amoebiasis, pathways in cancer, small cell lung cancer, platelet activation, regulation of actin cytoskeleton, and proteoglycans in cancer. Functionally, detected proteins, signaling pathways and ontologies are orchestrated to permit the binucleated trophoblastic cells migration and blood vessels modelling. In conclusion, the cloned condition presents the same mechanisms as control one, however overexpression of some specific ECM proteins could be responsible to exacerbate those mechanisms and can explain all morphophysiological alterations presented in cloned pregnancies associated to high pregnancies losses rates in this condition.


Subject(s)
Extracellular Matrix Proteins , Placentation , Animals , Cattle , Cell Movement , Extracellular Matrix Proteins/metabolism , Female , Phosphatidylinositol 3-Kinases/metabolism , Placenta/metabolism , Pregnancy , Proteomics
7.
J Proteomics ; 258: 104530, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35182786

ABSTRACT

Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1 h, 6 h, 12 h, or 24 h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation. SIGNIFICANCE: Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.


Subject(s)
Crotalid Venoms , Neurotoxicity Syndromes , Snake Bites , Animals , Crotalid Venoms/chemistry , Crotalus/metabolism , Humans , Mice , Proteins/metabolism , Proteomics , Snake Bites/therapy
8.
Toxins (Basel) ; 13(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34941696

ABSTRACT

Among the Chilopoda class of centipede, the Cryptops genus is one of the most associated with envenomation in humans in the metropolitan region of the state of São Paulo. To date, there is no study in the literature about the toxins present in its venom. Thus, in this work, a transcriptomic characterization of the Cryptops iheringi venom gland, as well as a proteomic analysis of its venom, were performed to obtain a toxin profile of this species. These methods indicated that 57.9% of the sequences showed to be putative toxins unknown in public databases; among them, we pointed out a novel putative toxin named Cryptoxin-1. The recombinant form of this new toxin was able to promote edema in mice footpads with massive neutrophils infiltration, linking this toxin to envenomation symptoms observed in accidents with humans. Our findings may elucidate the role of this toxin in the venom, as well as the possibility to explore other proteins found in this work.


Subject(s)
Arthropod Venoms/chemistry , Arthropod Venoms/toxicity , Chilopoda/chemistry , Animals , Chilopoda/genetics , Edema/chemically induced , Gene Expression Profiling , Immune Sera , Male , Mice, Inbred BALB C , Proteome , Rabbits , Recombinant Proteins
9.
Sci Rep ; 11(1): 22993, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34837007

ABSTRACT

DNA methylation is one of the epigenetic modifications that configures gene transcription programs. This study describes the DNA methylation profile of HIV-infected individuals with distinct characteristics related to natural and artificial viremia control. Sheared DNA from circulating mononuclear cells was subjected to target enrichment bisulfite sequencing designed to cover CpG-rich genomic regions. Gene expression was assessed through RNA-seq. Hypermethylation in virologic responders was highly distributed closer to Transcription Start Sites (p-value = 0.03). Hyper and hypomethylation levels within TSS adjacencies varied according to disease progression status (Kruskal-Wallis, p < 0.001), and specific differentially methylated regions associated genes were identified for each group. The lower the promoter methylation, the higher the gene expression in subjects undergoing virologic failure (R = - 0.82, p = 0.00068). Among the inversely correlated genes, those supporting glycolysis and its related pathways were hypomethylated and up-regulated in virologic failures. Disease progression heterogeneity was associated with distinct DNA methylation patterns in terms of rates and distribution. Methylation was associated with the expression of genes sustaining intracellular glucose metabolism in subjects undergoing antiretroviral virologic failure. Our findings highlight that DNA methylation is associated with latency, disease progression, and fundamental cellular processes.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , HIV Infections/virology , HIV-1/isolation & purification , Sustained Virologic Response , Virus Latency/genetics , Adult , Anti-Retroviral Agents/therapeutic use , Case-Control Studies , CpG Islands , Disease Progression , Female , Genome-Wide Association Study , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/pathology , Humans , Male , Middle Aged , Promoter Regions, Genetic
10.
Toxins (Basel) ; 13(8)2021 07 25.
Article in English | MEDLINE | ID: mdl-34437390

ABSTRACT

Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 µg/mL (low) or 2.5 µg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.


Subject(s)
Breast Neoplasms/metabolism , Crotalid Venoms/pharmacology , Neoplasm Proteins/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Neoplasm Proteins/genetics , Protein Interaction Maps , Proteome/drug effects , Proteomics
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972420

ABSTRACT

Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of Bothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A2 (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.


Subject(s)
Bothrops/genetics , Crotalid Venoms/genetics , Evolution, Molecular , Genome/genetics , Snake Venoms/genetics , Amino Acid Sequence , Animals , Base Sequence , Bothrops/classification , Crotalid Venoms/classification , Female , Gene Expression Profiling/methods , Phylogeny , Proteome/metabolism , Proteomics/methods , RNA-Seq/methods , Sequence Analysis, DNA/methods , Snake Venoms/classification
12.
Front Pharmacol ; 11: 1075, 2020.
Article in English | MEDLINE | ID: mdl-32774304

ABSTRACT

The Araneae order is considered one of the most successful groups among venomous animals in the world. An important factor for this success is the production of venoms, a refined biological fluid rich in proteins, short peptides and cysteine-rich peptides (CRPs). These toxins may present pharmacologically relevant biological actions, as antimicrobial, antiviral and anticancer activities, for instance. Therefore, there is an increasing interest in the exploration of venom toxins for therapeutic reasons, such as drug development. However, the process of peptide sequencing and mainly the evaluation of potential biological activities of these peptides are laborious, considering the low yield of venom extraction and the high variability of toxins present in spider venoms. Here we show a robust methodology for identification, sequencing, and initial screening of potential bioactive peptides found in the venom of Acanthoscurria rondoniae. This methodology consists in a multiomics approach involving proteomics, peptidomics and transcriptomics analyses allied to in silico predictions of antibacterial, antifungal, antiviral, and anticancer activities. Through the application of this strategy, a total of 92,889 venom gland transcripts were assembled and 84 novel toxins were identified at the protein level, including seven short peptides and 10 fully sequenced CRPs (belonging to seven toxin families). In silico analysis suggests that seven CRPs families may have potential antimicrobial or antiviral activities, while two CRPs and four short peptides are potentially anticancer. Taken together, our results demonstrate an effective multiomics strategy for the discovery of new toxins and in silico screening of potential bioactivities. This strategy may be useful in toxin discovery, as well as in the screening of possible activities for the vast diversity of molecules produced by venomous animals.

13.
Microorganisms ; 8(6)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486334

ABSTRACT

Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.

14.
mBio ; 11(2)2020 04 14.
Article in English | MEDLINE | ID: mdl-32291304

ABSTRACT

The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections.IMPORTANCE EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen.


Subject(s)
Actins/metabolism , Bacterial Adhesion , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/genetics , Inflammation , Intracellular Signaling Peptides and Proteins/genetics , Signal Transduction/immunology , Adhesins, Bacterial , Enteropathogenic Escherichia coli/genetics , Host-Pathogen Interactions , Humans , Polymerization , Type III Secretion Systems/metabolism
15.
Sci Rep ; 10(1): 6565, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300143

ABSTRACT

Circadian clocks improve plant fitness in a rhythmic environment. As each cell has its own circadian clock, we hypothesized that sets of cells with different functions would have distinct rhythmic behaviour. To test this, we investigated whether different organs in field-grown sugarcane follow the same rhythms in transcription. We assayed the transcriptomes of three organs during a day: leaf, a source organ; internodes 1 and 2, sink organs focused on cell division and elongation; and internode 5, a sink organ focused on sucrose storage. The leaf had twice as many rhythmic transcripts (>68%) as internodes, and the rhythmic transcriptomes of the internodes were more like each other than to those of the leaves. Among the transcripts expressed in all organs, only 7.4% showed the same rhythmic pattern. Surprisingly, the central oscillators of these organs - the networks that generate circadian rhythms - had similar dynamics, albeit with different amplitudes. The differences in rhythmic transcriptomes probably arise from amplitude differences in tissue-specific circadian clocks and different sensitivities to environmental cues, highlighted by the sampling under field conditions. The vast differences suggest that we must study tissue-specific circadian clocks in order to understand how the circadian clock increases the fitness of the whole plant.


Subject(s)
Circadian Rhythm/genetics , Organ Specificity/genetics , Saccharum/growth & development , Saccharum/genetics , Transcription, Genetic , Gene Expression Regulation, Plant , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Transcriptome/genetics
16.
J Proteomics ; 221: 103779, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32272218

ABSTRACT

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. SIGNIFICANCE: Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.


Subject(s)
Crotalid Venoms , Animals , Brazil , Cerebellum , Crotalid Venoms/toxicity , Crotalus , Mice , Proteomics
17.
J Proteomics ; 181: 60-72, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29621647

ABSTRACT

Elucidating the molecular mechanisms underlying snake venom variability provides important clues for understanding how the biological functions of this powerful toxic arsenal evolve. We analyzed in detail individual transcripts and venom protein isoforms produced by five specimens of a venomous snake (Bothrops atrox) from two nearby but genetically distinct populations from the Brazilian Amazon rainforest which show functional similarities in venom properties. Individual variation was observed among the venoms of these specimens, but the overall abundance of each general toxin family was conserved both in transcript and in venom protein levels. However, when expression of independent paralogues was analyzed, remarkable differences were observed within and among each toxin group, both between individuals and between populations. Transcripts for functionally essential venom proteins ("core function" proteins) were highly expressed in all specimens and showed similar transcription/translation rates. In contrast, other paralogues ("adaptive" proteins) showed lower expression levels and the toxins they coded for varied among different individuals. These results provide support for the inferences that (a) expression and translational differences play a greater role in defining adaptive variation in venom phenotypes than does sequence variation in protein coding genes and (b) convergent adaptive venom phenotypes can be generated through different molecular mechanisms. SIGNIFICANCE: Analysis of individual transcripts and venom protein isoforms produced by specimens of a venomous snake (Bothrops atrox), from the Brazilian Amazon rainforest, revealed that transcriptional and translational mechanisms contribute to venom phenotypic variation. Our finding of evidence for high expression of toxin proteins with conserved function supports the hypothesis that the venom phenotype consists of two kinds of proteins: conserved "core function" proteins that provide essential functional activities with broader relevance and less conserved "adaptive" proteins that vary in expression and may permit customization of protein function. These observations allowed us to suggest that genetic mechanisms controlling venom variability are not restricted to selection of gene copies or mutations in structural genes but also to selection of the mechanisms controlling gene expression, contributing to the plasticity of this important phenotype for venomous snakes.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/metabolism , Proteome/metabolism , Animals , Species Specificity
18.
Parasitology Research ; 108(1): 123-135, Sept 18, 2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1065154

ABSTRACT

Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk ofinfection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes upregulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16–17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as na indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.


Subject(s)
Mice , Immunization , Production of Products , Schistosoma mansoni/immunology , Cercaria/immunology , Transcriptome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...