Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275411

ABSTRACT

VPS13A, also known as chorein, whose loss of function causes chorea-acanthocytosis (ChAc), is characterized by Huntington's-disease-like neurodegeneration and neuropsychiatric symptoms in addition to acanthocytosis in red blood cells. We previously reported that ChAc-model mice with a loss of chorein function exhibited male infertility, with asthenozoospermia and mitochondrial dysmorphology in the spermatozoa. Here, we report a novel aspect of chorein dysfunction in male fertility, particularly its role in spermatogenesis and mitochondrial integrity. An increase in anti-malondialdehyde antibody immunoreaction within the testes, predominantly observed at the advanced stages of sperm formation in chorein-deficient mice, suggests oxidative stress as a contributing factor to mitochondrial dysfunction and impaired sperm maturation. The chorein immunoreactivity in spermatids of wild-type mice accentuates its significance in sperm development. ChAc-model mice exhibit mitochondrial ultrastructural abnormalities, specifically during the late stages of sperm maturation, suggesting a critical timeframe for chorein's action in spermiogenesis. We observed an increase in TOM20 protein levels, indicative of disrupted mitochondrial import mechanisms. The concurrent decrease in metabolic enzymes such as IDH3A, LDHC, PGK2, and ACAT1 suggests a complex chorein-mediated metabolic network that is essential for sperm vitality. Additionally, heightened separation of cytoplasmic droplets from sperm highlights the potential membrane instability in chorein-deficient spermatozoa. Metabolomic profiling further suggests a compensatory metabolic shift, with elevated glycolytic and TCA-cycle substrates. Our findings suggest that chorein is involved in anti-ferroptosis and the maturation of mitochondrial morphology in the late stages of spermatogenesis, and its deficiency leads to asthenozoospermia characterized by membrane instability, abnormal cytosolic glycolysis, abnormal mitochondrial function, and a disrupted TCA cycle. Further analyses are required to unravel the molecular mechanisms that directly link these findings and to elucidate the role of chorein in spermatogenesis as well as its broader implications.

2.
FEBS Open Bio ; 7(12): 2000-2007, 2017 12.
Article in English | MEDLINE | ID: mdl-29226086

ABSTRACT

Ameloblastoma is a benign tumor of the odontogenic epithelium with several histological subtypes. All subtypes of ameloblastoma contain abundant stroma; the tumor cells invade collectively into the surrounding tissues without losing intratumor cell attachments. However, the molecular mechanisms mediating ameloblastoma invasion remain unclear. Here, we evaluated the functional significance of the interactions between ameloblastoma tumor cells and stromal fibroblasts on collective cellular invasion using a three-dimensional cultivation method, double-layered collagen gel hemisphere (DL-CGH) culture. The AM-1 plexiform and AM-3 follicular human ameloblastoma cell lines and HFF-2 human fibroblasts were labeled with GFP and DsRed, respectively. Collective cellular invasion of ameloblastoma cells was assessed in the presence or absence of fibroblasts. Notably, without fibroblasts, AM-1 cells formed sharp, plexiform-like invasive processes, whereas AM-3 cells formed a series of blunt processes often observed during collective migration. In comparison, under the cocultures with HFF-2 fibroblasts, AM-3 cells formed tuft-like invasive processes and collectively invaded into outer layer more than that observed with AM-1 cells. Moreover, HFF-2 fibroblasts localized to the tips of the invasive tumor processes. These findings suggest that tumor-associated cells assist tumor cell invasion. Microscopic analysis of sectioned three-dimensional cultures revealed that AM-3/HFF-2 hemispheres were histologically similar to follicular ameloblastoma tumor samples. Therefore, our findings suggest that ameloblastoma subtypes exhibit distinct invasion patterns and that fibroblasts promote collective tumor invasion in follicular ameloblastoma.

3.
Biochem Biophys Res Commun ; 451(4): 491-6, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25124663

ABSTRACT

Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave interactively via these cytokines to create a microenvironment that leads to the extension of ameloblastomas.


Subject(s)
Ameloblastoma/physiopathology , Cell Communication/physiology , Interleukin-1alpha/pharmacology , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Stromal Cells/physiology , Cell Line, Tumor , Humans , Jaw Neoplasms/physiopathology , Receptors, Interleukin-1/antagonists & inhibitors
4.
Biochem Biophys Res Commun ; 419(3): 511-6, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22366033

ABSTRACT

Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disorder caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene encoding chorein. Although a deficiency in chorein function leads to apoptosis of striatal neurons in ChAc model mouse, its detailed subcellular localization and physiological role remain unclear. In this study, we produced two anti-chorein polyclonal antibodies and examined the intracellular localization of endogenous chorein in neuronal cells. Immunocytochemically, chorein was observed in the termini of extended neurites and partially colocalized with synaptotagmin I in differentiated PC12 cells. Subcellular localization analysis by sucrose density gradient fractionation showed that chorein and synaptotagmin I were located in dense-core vesicles (DCVs), which contain dopamine. In addition, PC12 cells stably expressing carboxyterminal fragment of chorein increased K(+)-induced dopamine release. Taken together, these results suggest that chorein is involved in exocytosis of DCV.


Subject(s)
Dopaminergic Neurons/metabolism , Secretory Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Line, Tumor , Exocytosis , Humans , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroacanthocytosis/genetics , PC12 Cells , Rats , Synaptotagmin I/metabolism , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...