Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 115(3): 707-718, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36031029

ABSTRACT

PURPOSE: Diffusing alpha-emitters Radiation Therapy (DaRT) releases alpha-emitting atoms into the tumor microenvironment. The treatment effectively ablates human and mice xenografts and shows 100% response rates in skin or head and neck squamous cell carcinoma patients. DaRT induces specific and systemic antitumor immune activation and synergizes with immune stimulation and modulation in mice. Here, the transcriptional profile activated by DaRT, and its potential to enhance responsiveness to immune checkpoint inhibition by programmed cell death protein 1 (PD-1) blockade were studied. METHODS AND MATERIALS: Squamous cell carcinoma tumor- bearing BALB/C mice were treated with DaRT or inert seeds in combination with anti-PD-1 (aPD-1) or IgG control antibody. Sixteen days after seed insertion, tumors and spleens were subjected to immunophenotyping and immunohistochemical staining. Combination of DaRT and aPD-1 was tested for efficacy. Gene expression analysis was performed on mRNA extracted from tumors 7 days after DaRT or inert insertion using Nanostring PanCancer-IO-360 panel, and tumors and spleens were subjected to flow cytometry analysis. RESULTS: DaRT in combination with aPD-1 delayed tumor development, induced CD3 and CD8 lymphocytes infiltration more efficiently than either monotherapy. The combined treatment reduced splenic polymorphonuclear myeloid derived suppressor cells more than aPD-1 therapy or control. Granzyme B release in the tumor was increased only in the combinational treatment and was correlated with T-lymphocyte infiltration. Gene expression and gene set enrichment analysis of mRNA levels 7 days after DaRT insertion indicated that DaRT upregulated apoptosis, p53 signaling, G1/S-related arrest, interferon signaling and myeloid related transcription, while downregulating DNA repair, cell proliferation, and notch-related transcription. Flow cytometry showed that DaRT increased dendritic cells activation and led to changes in MDSCs distribution. CONCLUSIONS: DaRT promotes a "hot" tumor microenvironment and changes in immune suppression that lead to a potentiation of aPD-1 blockade induced effector T cell function and improved treatment efficacy. This study provides rationale for investigating DaRT and aPD-1 combination in patients with squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , Tumor Microenvironment , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor
2.
Front Oncol ; 12: 888100, 2022.
Article in English | MEDLINE | ID: mdl-36237307

ABSTRACT

Glioblastoma multiforme (GBM) is at present an incurable disease with a 5-year survival rate of 5.5%, despite improvements in treatment modalities such as surgery, radiation therapy, chemotherapy [e.g., temozolomide (TMZ)], and targeted therapy [e.g., the antiangiogenic agent bevacizumab (BEV)]. Diffusing alpha-emitters radiation therapy (DaRT) is a new modality that employs radium-224-loaded seeds that disperse alpha-emitting atoms inside the tumor. This treatment was shown to be effective in mice bearing human-derived GBM tumors. Here, the effect of DaRT in combination with standard-of-care therapies such as TMZ or BEV was investigated. In a viability assay, the combination of alpha radiation with TMZ doubled the cytotoxic effect of each of the treatments alone in U87 cultured cells. A colony formation assay demonstrated that the surviving fraction of U87 cells treated by TMZ in combination with alpha irradiation was lower than was achieved by alpha- or x-ray irradiation as monotherapies, or by x-ray combined with TMZ. The treatment of U87-bearing mice with DaRT and TMZ delayed tumor development more than the monotherapies. Unlike other radiation types, alpha radiation did not increase VEGF secretion from U87 cells in culture. BEV treatment introduced several days after DaRT implantation improved tumor control, compared to BEV or DaRT as monotherapies. The combination was also shown to be superior when starting BEV administration prior to DaRT implantation in large tumors relative to the seed size. BEV induced a decrease in CD31 staining under DaRT treatment, increased the diffusive spread of 224Ra progeny atoms in the tumor tissue, and decreased their clearance from the tumor through the blood. Taken together, the combinations of DaRT with standard-of-care chemotherapy or antiangiogenic therapy are promising approaches, which may improve the treatment of GBM patients.

3.
J Neuroimmunol ; 356: 577582, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33910137

ABSTRACT

We explored whether experimental autoimmune encephalomyelitis (EAE) in Biozzi mice recapitulates temporal dynamics of tissue injury, immune-pathogenesis and CNS compartmentalization occurring in progressive multiple sclerosis (MS). Chronic EAE exhibited relapsing and progressing disease, partial closure of BBB, reduced tissue inflammatory activity, and development of meningeal ectopic lymphoid tissue, directly opposing (potentially driving) spinal subpial demyelinated plaques. A T cell predominant disease during relapses transformed into a B cell predominant disease in late chronic EAE, with high serum anti-MOG reactivity. Thus, late chronic Biozzi EAE recapitulates essential features of progressive MS, and is suitable for developing disease modifying and regenerative therapies.


Subject(s)
Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis, Chronic Progressive/immunology , Spinal Cord/immunology , Animals , Demyelinating Diseases/chemically induced , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/pathology , Freund's Adjuvant/toxicity , Mice , Mice, Biozzi , Multiple Sclerosis, Chronic Progressive/chemically induced , Multiple Sclerosis, Chronic Progressive/pathology , Spinal Cord/pathology
4.
J Neuroinflammation ; 17(1): 55, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32059733

ABSTRACT

BACKGROUND: Accumulating data suggest a central role for brain microglia in mediating cortical neuronal death in Alzheimer's disease (AD), and for Toll-like receptor 2 (TLR2) in their toxic activation. Amyloid deposition in preclinical AD is associated with microglial activation but not directly with neurodegeneration. We examined in transgenic 5xFAD mice the hypothesis that systemic TLR2 agonists, derived from common infectious agents, may accelerate neurodegeneration in AD. METHODS: Microbial wall-derived TLR2 agonists zymosan and lipoteichoic acid were administered intraperitoneally or intracerebroventricularly to 7-month-old wild-type or 5xFAD mice. Immunofluorescent stainings were used to quantify cortical neurons and evaluate tissue reaction. Microglial activation was assessed using functional assays, RNA expression, and FACS analysis. RESULTS: Repeated low-dose systemic administration of zymosan or lipoteichoic acid killed cortical neurons in 5xFAD mice but not in wild-type mice. Direct CNS delivery of a selective TLR2 antagonist blocked the neurotoxicity of systemically administered zymosan, indicating that CNS TLR2 mediates this effect. Systemically administered zymosan crossed the disrupted blood-brain barrier in 5xFAD mice and entered brain parenchyma. By intracerebroventricular delivery, we found a dose- and exposure time-dependent acute neurotoxic effect of the microbial TLR2 agonist, killing cortical neurons. 5xFAD mice exhibited significantly increased vulnerability to TLR2 agonist-induced neuronal loss as compared to wild-type mice. Microbial TLR2-induced neurodegeneration was abolished by inhibiting microglia. The vulnerability of 5xFAD mice brains was mediated by an increase in number and neurotoxic phenotype of TLR2-expressing microglia. CONCLUSIONS: We suggest that repeated exposure to microbial TLR2 agonists may facilitate neurodegeneration in AD by their microglial-mediated toxicity to the hyper-vulnerable environment of the AD brain.


Subject(s)
Alzheimer Disease/pathology , Cerebral Cortex/drug effects , Nerve Degeneration/pathology , Neurons/drug effects , Toll-Like Receptor 2/agonists , Animals , Cerebral Cortex/pathology , Lipopolysaccharides/pharmacology , Mice , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Neurons/pathology , Teichoic Acids/pharmacology , Zymosan/pharmacology
5.
Mol Neurobiol ; 57(2): 1021-1034, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31656989

ABSTRACT

Neuroglial precursor cells (NPC) possess immune-modulatory properties by which they prevent immune-mediated injury in experimental autoimmune encephalomyelitis (EAE). It is unclear whether cell transplantation in a clinical-relevant setup induces ongoing therapeutic effects in a chronic-active model of progressive multiple sclerosis (MS). We examined whether human embryonic stem cell (hESC)-derived NPCs inhibit progressive EAE in Biozzi AB/H mice, manifesting with chronic-active neuroinflammation and demyelinated plaques. hESC-derived NPCs were propagated for 6-8 weeks as spheres enriched for Olig2+ cells to switch from neuronal to glial commitment and to enrich for oligodendrocyte progenitor cells. NPC were transplanted intracerebroventricularly at 30 days post-EAE induction, after the acute relapse. We evaluated effects of cell transplantation on clinical parameters, neuroinflammation, myelination, and axonal loss. Transplanted animals exhibited a significantly milder disease, reduced neuroinflammation, reduced demyelination, and reduced axonal loss as compared to control EAE mice. Toluidine-blue semi-thin staining showed a bystander neuroprotective effect of human precursor cells preventing the loss of myelinated fibers in superficial layer of the cervical dorsal funiculus. Human Olig2+ cells were detected along spinal cord meninges after 65 days of follow-up. In co-cultures in vitro, Olig2+ human precursors inhibited Concanavalin A-induced murine T cell activation and proliferation. To conclude, glial-committed human NPC induce ongoing immune-regulatory and neuroprotective effects, following transplantation into mice with a clinical-relevant model of chronic-active MS and during established disease, entering the chronic phase. These properties highlight the therapeutic potential of human NPC transplantation in chronic MS and their delivery via the cerebrospinal fluid.


Subject(s)
Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Neural Stem Cells/transplantation , Oligodendrocyte Precursor Cells/cytology , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Mice , Myelin Sheath/immunology , Neurons/cytology , Oligodendrocyte Transcription Factor 2/metabolism , Stem Cell Transplantation/methods
6.
Curr Neurol Neurosci Rep ; 13(11): 397, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24078453

ABSTRACT

The strong rationale for cell-based therapy in multiple sclerosis is based on the ability of stem and precursor cells of neural and mesenchymal origin to attenuate neuroinflammation, to facilitate endogenous repair processes, and to participate directly in remyelination, if directed towards a myelin-forming fate. However, there are still major gaps in knowledge regarding induction of repair in chronic multiple sclerosis lesions, and whether transplanted cells can overcome the multiple environmental inhibitory factors which underlie the failure of endogenous repair. Major challenges in clinical translation include the determination of the optimal cellular platform, the route of cell delivery, and candidate patients for treatment.


Subject(s)
Multiple Sclerosis/surgery , Neural Stem Cells/transplantation , Stem Cell Transplantation/methods , Animals , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Humans , Multiple Sclerosis/diagnosis , Multiple Sclerosis/immunology , Neural Stem Cells/physiology , Neuronal Plasticity/physiology , Stem Cell Transplantation/trends
7.
Proc Natl Acad Sci U S A ; 103(47): 18008-13, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17101982

ABSTRACT

Intracellular vesicle trafficking performs essential functions in eukaryotic cells, such as membrane trafficking and delivery of molecules to their destinations. A major endocytotic route in plants is vesicle trafficking to the vacuole that plays an important role in plant salt tolerance. The final step in this pathway is mediated by the AtVAMP7C family of vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptors (v-SNAREs) that carry out the vesicle fusion with the tonoplast. Exposure to high-salt conditions causes immediate ionic and osmotic stresses, followed by production of reactive oxygen species. Here, we show that the reactive oxygen species are produced intracellularly, in endosomes that were targeted to the central vacuole. Suppression of the AtVAMP7C genes expression by antisense AtVAMP711 gene or in mutants of this family inhibited fusion of H2O2-containing vesicles with the tonoplast, which resulted in formation of H2O2-containing megavesicles that remained in the cytoplasm. The antisense and mutant plants exhibited improved vacuolar functions, such as maintenance of DeltapH, reduced release of calcium from the vacuole, and greatly improved plant salt tolerance. The antisense plants exhibited increased calcium-dependent protein kinase activity upon salt stress. Improved vacuolar ATPase activity during oxidative stress also was observed in a yeast system, in a DeltaVamp7 knockout strain. Interestingly, a microarray-based analysis of the AtVAMP7C genes showed a strong down-regulation of most genes in wild-type roots during salt stress, suggesting an evolutionary molecular adaptation of the vacuolar trafficking.


Subject(s)
Arabidopsis , Cytoplasmic Vesicles/metabolism , Endocytosis/physiology , Hydrogen Peroxide/metabolism , Oxidants/metabolism , SNARE Proteins/metabolism , Salts/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hydrogen-Ion Concentration , Membrane Fusion/physiology , Plant Roots/cytology , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , SNARE Proteins/genetics , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...