Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269714

ABSTRACT

The differentiation of keratocytes to fibroblasts and myofibroblasts is an essential requisite during corneal wound closure. The aim of this study is to uncover factors involved in differentiation-dependent alteration in the protein profile of human corneal stromal cells using quantitative proteomics. Human corneal fibroblasts were cultured and differentiated into keratocytes in serum-free media and myofibroblasts through treatment with TGF-ß. The protein cell lysates from the donors were tryptic and were digested and labeled using a 3-plex iTRAQ kit. The labeled peptides were subjected to LCMS analysis. Biological functional analysis revealed a set of crucial proteins involved in the differentiation of human corneal stromal cells which were found to be significantly enriched. The selected proteins were further validated by immunohistochemistry. Quantitative proteomics identified key differentially expressed proteins which are involved in cellular signaling pathways. Proteins involved in integrin signaling (Ras-RAP1b, TLN and FN) and SLIT-ROBO pathways (PFN1, CAPR1, PSMA5) as well as extracellular matrix proteins (SERPINH1, SPARC, ITGß1, CRTAP) showed enhanced expression in corneal fibroblasts and myofibroblasts compared to keratocytes, indicating their possible role in wound healing. Corneal stromal cell differentiation is associated with the activation of diverse molecular pathways critical for the repair of fibroblasts and myofibroblasts. Identified proteins such as profilin 1 and talin could play a tentative role in corneal healing and serve as a potential target to treat corneal fibrosis.


Subject(s)
Corneal Injuries , Proteomics , Cell Differentiation/physiology , Cells, Cultured , Cornea/metabolism , Corneal Injuries/metabolism , Fibroblasts/metabolism , Humans , Profilins/metabolism , Stromal Cells/metabolism , Wound Healing/physiology
2.
Glycobiology ; 32(1): 50-59, 2022 02 26.
Article in English | MEDLINE | ID: mdl-34969075

ABSTRACT

Opioid use for treatment of persistent pain has increased dramatically over the past two decades, but it has not resulted in improved pain management outcomes. To understand the molecular mechanisms of opioids, molecular signatures that arise from opioid exposure are often sought after, using various analytical methods. In this study, we performed proteomics, and multiglycomics via sequential analysis of polysialic acids, glycosaminoglycans, N-glycans and O-glycans, using the same cerebral spinal fluid (CSF) sample from patients that had long-term (>2 years), intrathecal morphine or baclofen administered via an indwelling pump. Proteomics and N-glycomics signatures between the two treatment groups were highly conserved, while significant differences were observed in polysialic acid, heparan sulfate glycosaminoglycan and O-glycan profiles between the two treatment groups. This represents the first study to investigate the potential relationships between diverse CSF conjugated glycans and long-term intrathecal drug exposure. The unique changes, observed by a sequential analytical workflow, reflect previously undescribed molecular effects of opioid administration and pain management.


Subject(s)
Baclofen , Morphine , Analgesics, Opioid/therapeutic use , Glycoconjugates , Humans , Injections, Spinal , Morphine/therapeutic use
3.
Exp Eye Res ; 192: 107936, 2020 03.
Article in English | MEDLINE | ID: mdl-32001250

ABSTRACT

We studied the early protein profile in the ocular tissue extracted after LASIK and SMILE surgery. SMILE and LASIK was performed in contralateral eyes and stromal tissue samples were collected from 10 eyes of 5 donors. The stromal tissue samples were analyzed using label free quantification approach and ITRAQ labelling approach in LC-MS/MS. Combined functional analysis revealed many differentially expressed proteins which were involved in important biological processes. About 117 unique differentially expressed proteins were identified using two different proteomic approaches. Collagens, proteoglycans, corneal crystallins were enriched and showed differential expression in SMILE and LASIK as compared to the non-surgical control. Apart from these, 14-3-3 class of proteins, Lysozyme (LYZ), Macrophage Migratory Inhibitory Factor protein (MIF), Pigment Epithelial Derived Factor (PEDF) were differentially expressed when compared between LASIK and SMILE. Peroxiredoxin 1 (PRDX1) expression was found to be reduced in LASIK as compared to SMILE. The expression of Lysozyme C and Macrophage Migratory Inhibitory Factor inflammatory response was found to be less in SMILE as compared to LASIK. Western blot validation of specific markers such as Collagen IV (COL4), Keratocan (KERA), Lumican (LUM), Aldehyde dehydrogenase 3 A1 (ALDH3A1), Lysozyme C (LYZC) confirmed the differences in the protein levels observed in SMILE and LASIK operated tissues as compared to non-surgical controls. In conclusion, this study revealed the early molecular changes occurring in the cornea resulting from these two surgical procedures which may have implications on managing post-operative complications.


Subject(s)
Corneal Stroma/surgery , Eye Proteins/metabolism , Keratomileusis, Laser In Situ/methods , Proteome/metabolism , Aged , Aged, 80 and over , Blotting, Western , Chromatography, Liquid , Collagen/metabolism , Corneal Stroma/metabolism , Corneal Surgery, Laser , Crystallins/metabolism , Humans , Male , Metabolome , Middle Aged , Prospective Studies , Proteoglycans/metabolism , Tandem Mass Spectrometry
4.
Clin Transl Med ; 6(1): 22, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28639235

ABSTRACT

Lipidomics is the identification and quantitation of changes in the lipidome of a cell, tissue, organ or biofluid in health and disease using high resolution mass spectrometry. Lipidome of a particular organism has relevance to the disease manifestation as it reflects the metabolic changes which can be a consequence of the disease. Hence these changes in the molecules can be considered as potential markers for screening and early detection of the disease. Biological fluids as blood/serum/plasma, urine, saliva, tear and cerebrospinal fluid, due to their accessibility, offer ease of collection with minimal or no discomfort to the patient and provide a ready footprint of the metabolic changes occurring during disease. This review provides a brief introduction to lipidomics and its role in understanding the metabolic changes in health and disease followed by discussion on the chemical diversity of the lipid species and their biological role, mammalian lipids and their metabolism and role of lipids in pathogens and the immune response before dwelling further into importance of studying lipidome in various biological fluids. The challenges in performing a lipidomic analysis at the experimental and data analysis stages are discussed.

5.
Eye Vis (Lond) ; 3: 19, 2016.
Article in English | MEDLINE | ID: mdl-27493978

ABSTRACT

Keratoconus is a progressive corneal thinning, ectatic condition, which affects vision. Recent advances in corneal topography measurements has helped advance proper diagnosis of this condition and increased research and clinical interests in the disease etiopathogenesis. Considerable progress has been achieved in understanding the progression of the disease and tear fluid has played a major role in the progress. This review discusses the importance of tear fluid as a source of biomarker for keratoconus and how advances in technology have helped map the complexity of tears and thereby molecular readouts of the disease. Expanding knowledge of the tear proteome, lipidome and metabolome opened up new avenues to study keratoconus and to identify probable prognostic or diagnostic biomarkers for the disease. A multidimensional approach of analyzing tear fluid of patients layering on proteomics, lipidomics and metabolomics is necessary in effectively decoding keratoconus and thereby identifying targets for its treatment.

6.
Proteome Sci ; 11: 29, 2013.
Article in English | MEDLINE | ID: mdl-23816347

ABSTRACT

BACKGROUND: A.BY/SnJ mice are used to study pathological alterations in the heart due to enteroviral infections. Since age is a well-known factor influencing the susceptibility of mice to infection, response to stress and manifestation of cardiovascular diseases, the myocardial proteome of A.BY/SnJ mice aged 1 and 4 months was comparatively studied using two dimensional-differential in-gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS: Complementary analyses by 2D-DIGE and gel-free LC-MS/MS revealed 96 distinct proteins displaying age associated alterations in their levels. Proteins related to protein transport, and transport chain, lipid metabolism and fatty acid transport showed significant changes in 4 months old mouse hearts compared to juvenile hearts. Proteins involved in lipid metabolism and transport were identified at significantly higher levels in older mice and dysregulation of proteins of the respiratory transport chain were observed. CONCLUSION: The current proteomics study discloses age dependent changes occurring in the hearts already in young mice of the strain A.BY/SnJ. Besides alterations in protein transport, we provide evidence that a decrease of ATP synthase in murine hearts starts already in the first months of life, leading to well-known low expression levels manifested in old mice thereby raising the possibility of reduced energy supply. In the first few months of murine life this seems to be compensated by an increased lipid metabolism. The functional alterations described should be considered during experimental setups in disease related studies.

7.
Proteomics ; 11(22): 4310-20, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21954127

ABSTRACT

The most relevant clinical phenotype resulting from chronic enteroviral myocarditis is dilated cardiomyopathy (DCM). Mice of the susceptible mouse strain A.BY/SnJ mimick well human DCM since they develop as a consequence of persistent infection and chronic inflammation a dilation of the heart ventricle several weeks after coxsackievirus B3 (CVB3) infection. Therefore, this model is well suited for the analysis of changes in the heart proteome associated with DCM. Here, we present a proteomic survey of the dilated hearts based on differential fluorescence gel electrophoresis and liquid chromatography-mass spectrometric centered methods in comparison to age-matched non-infected hearts. In total, 101 distinct proteins, which belong to categories immunity and defense, cell structure and associated proteins, energy metabolism and protein metabolism/modification differed in their levels in both groups. Levels of proteins involved in fatty acid metabolism and electron transport chain were found to be significantly reduced in infected mice suggesting a decrease in energy production in CVB3-induced DCM. Furthermore, proteins associated with muscle contraction (MLRV, MLRc2, MYH6, MyBPC3), were present in significantly altered amounts in infected mice. A significant increase in the level of extracellular matrix proteins in the dilated hearts indicates cardiac remodeling due to fibrosis.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/virology , Coxsackievirus Infections/metabolism , Enterovirus B, Human/isolation & purification , Enzymes/metabolism , Extracellular Matrix Proteins/metabolism , Proteome/metabolism , Animals , Blotting, Western , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/pathology , Case-Control Studies , Chromatography, Liquid , Coxsackievirus Infections/enzymology , Coxsackievirus Infections/pathology , Coxsackievirus Infections/virology , Disease Models, Animal , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism , Immunohistochemistry , Mass Spectrometry , Metabolic Networks and Pathways , Mice , Proteome/analysis , Reproducibility of Results , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...