Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 33(6): 1210-1221, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35658441

ABSTRACT

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Nicotinamide Phosphoribosyltransferase , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , B7 Antigens , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Mice , Neoplasms/drug therapy , Neoplasms/enzymology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
J Med Chem ; 63(2): 601-612, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31859507

ABSTRACT

The serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985. BAY-985 inhibits the cellular phosphorylation of interferon regulatory factor 3 and displays antiproliferative efficacy in the melanoma cell line SK-MEL-2 but showed only weak antitumor activity in the SK-MEL-2 human melanoma xenograft model.


Subject(s)
I-kappa B Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Discovery , High-Throughput Screening Assays , Humans , Models, Molecular , Phosphorylation , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...