Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Chem Mater ; 36(1): 407-416, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222938

ABSTRACT

Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.

2.
Chemistry ; 29(32): e202300155, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36919896

ABSTRACT

The design of soft biomaterials requires a deep understanding of molecular self-assembly. Here a nanoscale infrared (IR) spectroscopy study of a two-component supramolecular gel is introduced to assess the system's heterogeneity and supramolecular assembly. In contrast to far-field IR spectroscopy, near-field IR spectroscopy revealed differences in the secondary structures of the gelator molecules and non-covalent interactions at three distinct nano-locations of the gel network. A ß-sheet arrangement is dominant in single and parallel fibres with a small proportion of an α-helix present, while the molecular assembly derives from strong hydrogen bonding. However, at the crossing point of two fibres, only the ß-sheet motif is observed, with an intense π-π stacking contribution. Near-field nanospectroscopy can become a powerful tool for the nanoscale distinction of non-covalent interactions, while it is expected to advance the existing spectroscopic assessments of supramolecular gels.


Subject(s)
Biocompatible Materials , Spectroscopy, Near-Infrared , Spectrophotometry, Infrared , Protein Structure, Secondary , Gels/chemistry
3.
ACS Omega ; 8(11): 10225-10234, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969436

ABSTRACT

The N-fluorenyl-9-methyloxycarbonyl (Fmoc)-protected amino acids have shown high antimicrobial application potential, among which the phenylalanine derivative (Fmoc-F) is the most well-known representative. However, the activity spectrum of Fmoc-F is restricted to Gram-positive bacteria only. The demand for efficient antimicrobial materials expanded research into graphene and its derivatives, although the reported results are somewhat controversial. Herein, we combined graphene oxide (GO) flakes with Fmoc-F amino acid to form Fmoc-F/GO hybrid hydrogel for the first time. We studied the synergistic effect of each component on gelation and assessed the material's bactericidal activity on Gram-negative Escherichia coli (E. coli). GO flakes do not affect Fmoc-F self-assembly per se but modulate the elasticity of the gel and speed up its formation. The hybrid hydrogel affects E. coli survival, initially causing abrupt bacterial death followed by the recovery of the surviving ones due to the inoculum effect (IE). The combination of graphene with amino acids is a step forward in developing antimicrobial gels due to their easy preparation, chemical modification, graphene functionalization, cost-effectiveness, and physicochemical/biological synergy of each component.

4.
Phys Chem Chem Phys ; 25(12): 8725-8733, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36896827

ABSTRACT

We report the effects of a laser-oxidized single layer graphene (SLG) surface on the self-assembly of amphiphilic gelator N-fluorenylmethoxycarbonyl-L-phenylalanine (Fmoc-Phe) towards an gel-SLG interface. Laser oxidation modulates the levels of hydrophobicity/hydrophilicity on the SLG surface. Atomic force, scanning electron, helium ion and scattering scanning nearfield optical microscopies (AFM, SEM, HIM, s-SNOM) were employed to assess the effects of surface properties on the secondary and tertiary organization of the formed Fmoc-Phe fibres at the SLG-gel interface. S-SNOM shows sheet-like secondary structures on both hydrophobic/hydrophilic areas of SLG and helical or disordered structures mainly on the hydrophilic oxidized surface. The gel network heterogeneity on pristine graphene was observed at the scale of single fibres by s-SNOM, demonstrating its power as a unique tool to study supramolecular assemblies and interfaces at nanoscale. Our findings underline the sensitivity of assembled structures to surface properties, while our characterization approach is a step forward in assessing surface-gel interfaces for the development of bionic devices.

5.
Chem Commun (Camb) ; 57(80): 10375-10378, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34541596

ABSTRACT

A transient organo-gelation system with spatiotemporal dynamic properties is described. Here, the solvent actively controls a complex set of equilibria that underpin the dynamic assembly event. The observed metastability is due to the in situ formation of a secondary solvent, acting as an antagonist against the primary solvent of the organogel.

6.
Nanoscale Adv ; 3(7): 2065-2074, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-36133099

ABSTRACT

An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence microscopy confirmed the selective aggregation of protein molecules towards the irradiated areas. In addition, the attachment of b-BSA was detected by a reaction with fluorescently labelled avidin-fluorescein isothiocyanate (Av-FITC). In contrast to chemically oxidized graphene, laser-induced oxidation introduces the capability for localization on oxidized areas and tunability of the levels of oxidation, resulting in controlled guidance of proteins by light over graphene surfaces and progressing towards graphene microchips suitable for biomedical applications.

7.
Chemistry ; 26(33): 7374-7383, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32083359

ABSTRACT

The synthesis of tetramethoxyresorcinarene podands bearing p-toluene arms connected by -SO3 - (1) and -CH2 O- (2) linkers is presented herein. In the solid state, the resorcinarene podand 1 forms an intramolecular self-inclusion complex with the pendant p-toluene group of a podand arm, whereas the resorcinarene podand 2 does not show self-inclusion. The conformations of the flexible resorcinarene podands in solution were investigated by variable-temperature experiments using 1D and 2D NMR spectroscopic techniques as well as by computational methods, including a conformational search and subsequent DFT optimisation of representative structures. The 1 H NMR spectra of 1 and 2 at room temperature show a single set of proton signals that are in agreement with C4v symmetry. At low temperatures, the molecules exist as a mixture of boat conformations featuring slow exchange on the NMR timescale. Energy barriers (ΔG≠ 298 ) of 55.5 and 52.0 kJ mol-1 were calculated for the boat-to-boat exchange of 1 and 2, respectively. The results of the ROESY experiments performed at 193 K and computational modelling suggest that in solution the resorcinarene podand 1 adopts a similar conformation to that present in its crystal structure, whereas podand 2 populates a more versatile range of conformations in solution.

8.
Chem Asian J ; 14(5): 647-654, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30644629

ABSTRACT

The anion-binding properties of three closely related oligoamide foldamers were studied using NMR spectroscopy, isothermal titration calorimetry and mass spectrometry, as well as DFT calculations. The 1 H NMR spectra of the foldamers in [D6 ]acetone solution revealed partial preorganization by intramolecular hydrogen bonding, which creates a suitable cavity for anion binding. The limited size of the cavity, however, enabled efficient binding by the inner amide protons only for the chloride anion resulting in the formation of a thermodynamically stable 1:1 complex. All 1:1 chloride complexes displayed a significant favourable contribution of the entropy term. Most likely, this is due to the release of ordered solvent molecules solvating the free foldamer and the anion to the bulk solution upon complex formation. The introduction of electron-withdrawing substituents in foldamers 2 and 3 had only a slight effect on the thermodynamic constants for chloride binding compared to the parent receptor. Remarkably, the binding of chloride to foldamer 3 not only produced the expected 1:1 complex but also open aggregates with 1:2 (host:anion) stoichiometry.

9.
Chemistry ; 23(65): 16671-16680, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29105164

ABSTRACT

A series of aromatic oligoamide foldamers with two or three pyridine-2,6-dicarboxamide units as their main folding motifs and varying aromatic building blocks as linkers have been synthetized to study the effects of the structural variation on the folding properties and conformational stability. Crystallographic studies showed that in the solid state the central linker unit either elongates the helices and more open S-shaped conformations, compresses the helices to more compact conformations, or acts as a rigid spacer separating the pyridine-2,6-dicarboxamide units, which for their part add the predictability of the conformational properties. Multidimensional NMR studies showed that, even in solution, foldamers show conformational stability and folded conformations comparable to the solid-state structures.

10.
J Colloid Interface Sci ; 464: 59-65, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26609923

ABSTRACT

HYPOTHESIS: Macrocyclic amphiphiles form interesting self-assembling structures, including solid lipid nanoparticles, which have potential applications in drug encapsulation. Aryl-extended calixpyrroles, which act as anion binding hosts, are expected to form solid lipid nanoparticles, even though the alkyl chains have unusual perpendicular geometry with respect to the hydrophilic head group. The preparation conditions and the alkyl chain length should affect the size and stability of the particles. EXPERIMENTS: Solid lipid nanoparticles of two aryl-extended calixpyrroles with resorcinol walls and either meso-dodecyl or meso-methyl alkyl chains were compared. Ethanolic solutions of the calixpyrroles were mixed with water and the resulting nanoparticle dispersions were studied with dynamic light scattering and nanoparticle tracking analysis. The effect of different calixpyrrole/ethanol/water ratios on particle size was tested. The surface charge of the particles at different pH and NaCl concentration was determined by zeta potential measurements. FINDINGS: The meso-dodecyl calixpyrrole produced small nanoparticles with mean hydrodynamic diameters between 40 and 70nm in 0.86-4.28M ethanol. The particles were stable in solution for several months. Particles prepared from meso-methyl calixpyrrole were larger and less stable. The smallest particles were obtained with low calixpyrrole concentration and calixpyrrole/ethanol ratio. Larger ethanol/water ratio induced broader particle size distributions. Increasing pH aided the stability of the particles due to increased negative surface charge.

11.
Chemistry ; 21(26): 9493-504, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-25965104

ABSTRACT

A series of small, unsymmetrical pyridine-2,6-dicarboxylamide oligoamide foldamers with varying lengths and substituents at the end groups were synthetized to study their conformational properties and folding patterns. The @-type folding pattern resembled the oxyanion-hole motifs of enzymes, but several alternative folding patterns could also be characterized. Computational studies revealed several alternative conformers of nearly equal stability. These folding patterns differed from each other in their intramolecular hydrogen-bonding patterns and aryl-aryl interactions. In the solid state, the foldamers adopted either the globular @-type fold or the more extended S-type conformers, which were very similar to those foldamers obtained computationally. In some cases, the same foldamer molecule could even crystallize into two different folding patterns, thus confirming that the different folding patterns are very close in energy in spite of their completely different shapes. Finally, the best match for the observed NOE interactions in the liquid state was a conformation that matched the computationally characterized helix-type fold.

12.
Chem Asian J ; 9(7): 1860-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24782080

ABSTRACT

An unexpected and previously unknown resorcinarene mono-crown with a fused benzofuran moiety in its macrocyclic core was obtained as a byproduct from a bridging reaction of tetramethoxy resorcinarene with tetraethylene glycol ditosylate. The formation of the fused benzofuran moiety in the resorcinarene macrocycle resulted in a unique rigid and puckered boat conformation, as shown by XRD studies in the solid state. Modification of the macrocycle was also observed to affect the photophysical properties in solution by enhancing the fluorescence brightness compared with a conventional resorcinarene macrocycle. The fluorescent properties enabled unique detection of structural features, that is, the rigid boat conformation with the conjugated benzofuran system and the more flexible crown bridge part, in solution.


Subject(s)
Benzofurans/chemistry , Calixarenes/chemistry , Phenylalanine/analogs & derivatives , Benzofurans/chemical synthesis , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Fluorescence , Molecular Conformation , Molecular Structure , Phenylalanine/chemistry , Spectrometry, Fluorescence , Structure-Activity Relationship
13.
Anal Chem ; 85(7): 3489-92, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23506040

ABSTRACT

Diffusion ordered NMR spectroscopy (DOSY) was used as an analytical tool to estimate the size of thiol-stabilized gold nanoclusters in solution, namely, phenylethanethiol (PET) stabilized Au25(PET)18, Au38(PET)24, and Au144(PET)60. This was achieved by determining the diffusion coefficient and hydrodynamic radius from solution samples that were confirmed to be monodispersed by electrospray ionization mass spectrometry. The average cluster diameters obtained by this technique were estimated to be 1.7, 2.2, and 3.1 nm for the Au25(PET)18, Au38(PET)24, and Au144(PET)60 nanoclusters, respectively, which were shown to agree well with the average diameters of the corresponding single crystal or theoretical structures reported in the literature. Consequently, the DOSY technique is demonstrated to be a potentially valuable nondestructive tool for characterization of nanoparticle mixtures and verifying the purity of product solutions.


Subject(s)
Gold/chemistry , Magnetic Resonance Spectroscopy/methods , Nanostructures/chemistry , Sulfhydryl Compounds/chemistry , Diffusion , Models, Molecular , Particle Size
14.
Org Lett ; 15(5): 1096-9, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23418984

ABSTRACT

An improved Lewis acid catalyzed synthesis method for methyl tetramethoxy resorcinarene is described, which produced the missing lower rim methyl derivative of this partially O-alkylated resorcinarene family. Structural characterization by means of variable temperature NMR experiments and single crystal X-ray diffraction studies furthermore revealed that the resorcinarene core adopts different conformations in the solid state and in solution.

15.
Nanoscale ; 4(14): 4095-8, 2012 Jul 21.
Article in English | MEDLINE | ID: mdl-22532448

ABSTRACT

A simple one-pot method for the preparation of subnanometre-size benzotriazolate (BTA) protected copper clusters, Cu(n)BTA(m), is reported. The clusters were analyzed by optical and infrared spectroscopy, mass spectrometry and transmission electron microscopy together with computational methods. We suggest a structural motif where the copper core of the Cu(n)BTA(m) clusters is protected by BTA-Cu(i)-BTA units.


Subject(s)
Copper/chemistry , Triazoles/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Quantum Theory , Spectrophotometry, Ultraviolet
16.
Org Biomol Chem ; 10(10): 2019-25, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22290247

ABSTRACT

Silver complexes of a cation binding supramolecular host, resorcinarene bis-crown (CNBC5) with propyl, nonyl, decyl and undecyl alkyl chains were investigated by NMR titration, picrate extraction and single crystal X-ray diffraction. Binding studies showed that both 1 : 1 and 1 : 2 (host-Ag(+)) complexes are present in solution with only a slight effect of the lower rim alkyl chain length on the binding constants (log K 4.0-4.2 for 1 : 2 complexes). Solid state complexes of the resorcinarene bis-crowns bearing either C(3) or C(11) chains were obtained. Single crystal X-ray analyses showed that both derivatives bind silver ions by metal-arene and Ag···O coordination from the crown ether bridges and from the solvent, and pack in layered or bilayered fashion. Furthermore, the amphiphilic nature of C11BC5 was demonstrated using the Langmuir balance technique. Langmuir-Blodgett films of the amphiphilic C11BC5-Ag complex were transferred onto a substrate and shown to possess antibacterial activity against E. coli.


Subject(s)
Anti-Bacterial Agents/chemistry , Calixarenes/chemistry , Coordination Complexes/chemistry , Phenylalanine/analogs & derivatives , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Calixarenes/pharmacology , Coordination Complexes/pharmacology , Crystallography, X-Ray , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Molecular Structure , Phenylalanine/chemistry , Phenylalanine/pharmacology , Silver/pharmacology
17.
Chem Asian J ; 7(4): 809-17, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22311655

ABSTRACT

Mixed-donor atom tetramethoxy resorcinarene bis-thiacrown hosts, in which the crown unit contains both hard oxygen and soft sulfur donor atoms, were synthesized for soft metal cation binding. The binding properties were investigated both in solution and in the solid state by NMR spectroscopy and X-ray crystallography. It was found that the resorcinarene bis-thiacrowns were able to complex silver cations with remarkable affinity forming readily 1:2 host-guest complexes in solution. The solid state structures also revealed that the bis-thiacrowns form silver complexes in an unanticipated endo- and exo-cavity fashion within the same host molecule. Both the solution and solid state studies indicated the sulfur atoms to be the major contributing donor atoms in forming the binding interactions with silver cations.

18.
Org Biomol Chem ; 9(3): 906-14, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21132217

ABSTRACT

o-Nitroaniline functionalized resorcinarene octapodands 1-5 with pendant methyl, ethyl, pentyl, nonyl or 1-decenyl groups, respectively, were synthesized and their structural properties investigated using X-ray crystallography and NMR spectroscopy. The upper rim of each podand is identical containing flexible side arms, in which rotation around the -OCH(2)CH(2)N- linkers create excellent possibilities for polymorphism. Two conformational polymorphs of acetone solvate of 2 were identified containing different side arm orientation and crystal packing. Compound 1 crystallized from acetone and nitromethane yielding two pseudopolymorphs with different packing motifs. The longer alkyl chains of 3-5 lead to differences in solubility and induce amphiphilic properties, which were studied at the air-water interface using the Langmuir-film technique. Crystals of amphiphilic compound 5, which has hydrophobic alkyl tails at the lower rim and hydrophilic nitroaniline groups at the upper rim, showed an interesting packing motif with alternating aromatic and aliphatic layers. Versatile structures of the octapodands in solid state and in solution serve as an example of how conformational flexibility can be utilized in crystal engineering and creating self-assembling monolayer structures.

19.
Inorg Chem ; 49(24): 11473-84, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21090769

ABSTRACT

Ditopic salophen-UO(2) receptors 1-4 and 7 co-crystallize with tetramethylammonium (TMA) chloride and fluoride salts producing good quality crystals amenable for X-ray diffraction characterization. The arrangement of the receptor and salt units in the crystal lattice is such that tetrameric ball-shaped assemblies are formed, where an inner cluster of four TMA cations are surrounded by an outer shell of four UO(2)-bound anions. These elaborate architectures, which occur in all cases, regardless of a certain degree of structural modification on the receptors, lead to lattices that belong to non-centrosymmetric (NCS) space groups. Interestingly, the tetragonal symmetry of the tetrameric ball-shaped assemblies is either retained (I4̅) or lost (R3c and I4̅3d) at the lattice level, without compromising the NCS nature of the crystal lattices. The principal X-ray investigation on TMAX (X = Cl/F) co-crystals, that is, 1-(TMA)Cl, 2-(TMA)Cl, 3-(TMA)Cl, 4-(TMA)Cl, 7-(TMA)Cl, and 7-(TMA)F, is accompanied by NMR and electrospray ionization (ESI) mass spectrometry studies to gather additional insight on the modality of formation of the solid state structures observed. The important role of cation-π interactions in the receptor-salt recognition process is renewed and strengthened by comparison with NMR titration data with a novel reference compound, the salophen-UO(2) complex 8. Given the importance of NCS and polar crystalline solids in the development of functional materials, this study shows that this property can be introduced into elaborate host-guest systems, as those which assemble in the architectures described here, thus expanding its field of applicability.

20.
Org Biomol Chem ; 7(20): 4211-7, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19795059

ABSTRACT

The synthesis and structural properties of tetramethoxy resorcinarene mono-crown-5 (1) are described. The binding characteristics of 1 toward acetylcholine and tetramethylammonium salts were investigated by 1H NMR titration. It was observed that the cavity of 1 provides a better fit to acetylcholine compared to the smaller tetramethylammonium cation, as acetylcholine is able to interact with both the crown ether moiety and the free hydroxyl groups of receptor 1 simultaneously.


Subject(s)
Calixarenes/chemistry , Calixarenes/chemical synthesis , Phenylalanine/analogs & derivatives , Quaternary Ammonium Compounds/chemistry , Binding Sites , Crown Compounds/chemistry , Hydroxides/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Phenylalanine/chemical synthesis , Phenylalanine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL