Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oral Dis ; 28(3): 734-744, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33486840

ABSTRACT

OBJECTIVES: Autosomal-dominant hypocalcified amelogenesis imperfecta (ADHCAI) shows phenotypic heterogeneity. Our aim was to characterise the ADHCAI phenotypes, tooth properties and genotypes. METHODS: Three unrelated ADHCAI probands and seven additional affected members of the three families were recruited. Mutations were identified by exome and Sanger sequencing, and haplotypes by SNP array. Tooth colour, roughness, density, nanohardness, minerals and ultrastructure were investigated. RESULTS: Ten participants were heterozygous for the FAM83H mutation c.1387C>T (p.Gln463*). All shared a 3.43 Mbp region on chromosome 8q24.3 encompassing the FAM83H variant, indicating a common ancestry. The c.1387C>T was estimated to be 23.8 generations or 600 years. The FAM83H enamel had higher roughness and lower lightness, density, nanohardness, and calcium and phosphorus levels than controls. Blunted enamel rods, wide interrod spaces and disorganised dentinoenamel junctions were observed. Evaluating the patients with the same mutation and reviewing others with different mutations in FAM83H revealed that the FAM83H heterogeneous phenotypes are age-influenced. Tooth colour and surface texture change with ageing. CONCLUSIONS: FAM83H enamel demonstrated decreased lightness, density, hardness, calcium, phosphorus and defective ultrastructure. We have identified that the phenotypic variation in FAM83H-associated ADHCAI is age-related. Awareness of the correlation between age and clinical features of FAM83H-ADHCAI can help dentists make an accurate diagnosis.


Subject(s)
Amelogenesis Imperfecta , Amelogenesis Imperfecta/genetics , Codon, Nonsense , Humans , Phenotype , Proteins/genetics
2.
Mol Genet Genomics ; 295(4): 923-931, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32246227

ABSTRACT

Amelogenesis imperfecta type IG (AI1G) is caused by mutations in FAM20A. Genotypic and phenotypic features of AI1G are diverse and their full spectra remain to be characterized. The aim of this study was to identify and summarize variants in FAM20A in a broad population of patients with AI1G. We identified a Thai female (Pt-1) and a Saudi male (Pt-2) affected with AI1G. Both had hypoplastic enamel, gingival hyperplasia, and intrapulpal calcification. Pt-1 also had rapidly progressive embedding of unerupted teeth, early eruption of permanent teeth, and spontaneous dental infection. Uniquely, Pt-2 had all permanent teeth erupted which was uncommon in AI1G patients. Whole exome sequencing (WES) identified that Pt-1 was heterozygous for FAM20A, c.758A > G (p.Tyr253Cys), inherited from her father. The mutation on maternal allele was not detected by WES. Pt-2 possessed compound heterozygous mutations, c.1248dupG (p.Phe417Valfs*7); c.1081C > T (p.Arg361Cys) in FAM20A. Array comparative genomic hybridization (aCGH), cDNA sequencing, and whole genome sequencing successfully identified 7531 bp deletion on Pt-1's maternal allele. This was the largest FAM20A deletion ever found. A review of all 70 patients from 50 independent families with AI1G (including two families in this study) showed that the penetrance of hypoplastic enamel and gingival hyperplasia was complete. Unerupted permanent teeth were found in all 70 patients except Pt-2. Exons 1 and 11 were mutation-prone. Most mutations were frameshift. Certain variants showed founder effect. To conclude, this study reviews and expands phenotypic and genotypic spectra of AI1G. A large deletion missed by WES can be detected by WGS. Hypoplastic enamel, gingival hyperplasia, and unerupted permanent teeth prompt genetic testing of FAM20A. Screening of nephrocalcinosis, early removal of embedded teeth, and monitoring of dental infection are recommended.


Subject(s)
Amelogenesis Imperfecta/genetics , Dental Enamel Proteins/genetics , Nephrocalcinosis/genetics , Sequence Deletion/genetics , Adolescent , Adult , Amelogenesis Imperfecta/pathology , Child , Comparative Genomic Hybridization , Exons/genetics , Female , Frameshift Mutation/genetics , Genotype , Heterozygote , Homozygote , Humans , Male , Mutation/genetics , Nephrocalcinosis/pathology , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...