Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Am J Physiol Heart Circ Physiol ; 315(5): H1148-H1158, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30074840

ABSTRACT

Epoxyeicosatrienoic acids (EETs) decrease cardiac ischemia-reperfusion injury; however, the mechanism of their protective effect remains elusive. Here, we investigated the cardioprotective action of a novel EET analog, EET-B, in reperfusion and the role of hypoxia-inducible factor (HIF)-1α in such action of EET-B. Adult male rats were subjected to 30 min of left coronary artery occlusion followed by 2 h of reperfusion. Administration of 14,15-EET (2.5 mg/kg) or EET-B (2.5 mg/kg) 5 min before reperfusion reduced infarct size expressed as a percentage of the area at risk from 64.3 ± 1.3% in control to 42.6 ± 1.9% and 46.0 ± 1.6%, respectively, and their coadministration did not provide any stronger effect. The 14,15-EET antagonist 14,15-epoxyeicosa-5( Z)-enoic acid (2.5 mg/kg) inhibited the infarct size-limiting effect of EET-B (62.5 ± 1.1%). Similarly, the HIF-1α inhibitors 2-methoxyestradiol (2.5 mg/kg) and acriflavine (2 mg/kg) completely abolished the cardioprotective effect of EET-B. In a separate set of experiments, the immunoreactivity of HIF-1α and its degrading enzyme prolyl hydroxylase domain protein 3 (PHD3) were analyzed in the ischemic areas and nonischemic septa. At the end of ischemia, the HIF-1α immunogenic signal markedly increased in the ischemic area compared with the septum (10.31 ± 0.78% vs. 0.34 ± 0.08%). After 20 min and 2 h of reperfusion, HIF-1α immunoreactivity decreased to 2.40 ± 0.48% and 1.85 ± 0.43%, respectively, in the controls. EET-B blunted the decrease of HIF-1α immunoreactivity (7.80 ± 0.69% and 6.44 ± 1.37%, respectively) and significantly reduced PHD3 immunogenic signal in ischemic tissue after reperfusion. In conclusion, EET-B provides an infarct size-limiting effect at reperfusion that is mediated by HIF-1α and downregulation of its degrading enzyme PHD3. NEW & NOTEWORTHY The present study shows that EET-B is an effective agonistic 14,15-epoxyeicosatrienoic acid analog, and its administration before reperfusion markedly reduced myocardial infarction in rats. Most importantly, we demonstrate that increased hypoxia-inducible factor-1α levels play a role in cardioprotection mediated by EET-B in reperfusion likely by mechanisms including downregulation of the hypoxia-inducible factor -1α-degrading enzyme prolyl hydroxylase domain protein 3.


Subject(s)
8,11,14-Eicosatrienoic Acid/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/enzymology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/therapeutic use , Animals , Disease Models, Animal , Down-Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Male , Myocardial Infarction/enzymology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Proteolysis , Rats, Sprague-Dawley , Signal Transduction/drug effects
2.
J Lipid Res ; 55(10): 2093-102, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24958911

ABSTRACT

Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/ß-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway.


Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Epoxide Hydrolases/metabolism , Glycerides/metabolism , Microsomes/enzymology , Signal Transduction/physiology , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Hep G2 Cells , Humans , Signal Transduction/drug effects
3.
J Mol Cell Cardiol ; 59: 20-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23419451

ABSTRACT

We previously demonstrated that 11,12 and 14,15-epoxeicosatrienoic acids (EETs) produce cardioprotection against ischemia-reperfusion injury in dogs and rats. Several signaling mechanisms have been implicated in the cardioprotective actions of the EETs; however, their mechanisms remain largely elusive. Since nitric oxide (NO) plays a significant role in cardioprotection and EETs have been demonstrated to induce NO production in various tissues, we hypothesized that NO is involved in mediating the EET actions in cardioprotection. To test this hypothesis, we used an in vivo rat model of infarction in which intact rat hearts were subjected to 30-min occlusion of the left coronary artery and 2-hr reperfusion. 11,12-EET or 14,15-EET (2.5mg/kg) administered 10min prior to the occlusion reduced infarct size, expressed as a percentage of the AAR (IS/AAR), from 63.9±0.8% (control) to 45.3±1.2% and 45.5±1.7%, respectively. A nonselective nitric oxide synthase (NOS) inhibitor, L-NAME (1.0mg/kg) or a selective endothelial NOS inhibitor, L-NIO (0.30mg/kg) alone did not affect IS/AAR but they completely abolished the cardioprotective effects of the EETs. On the other hand, a selective neuronal NOS inhibitor, nNOS I (0.03mg/kg) and a selective inducible NOS inhibitor, 1400W (0.10mg/kg) did not affect IS/AAR or block the cardioprotective effects of the EETs. Administration of 11,12-EET (2.5mg/kg) to the rats also transiently increased the plasma NO concentration. 14,15-EET (10µM) induced the phosphorylation of eNOS (Ser(1177)) as well as a transient increase of NO production in rat cardiomyoblast cell line (H9c2 cells). When 11,12-EET or 14,15-EET was administered at 5min prior to reperfusion, infarct size was also reduced to 42.8±2.2% and 42.6±1.9%, respectively. Interestingly, L-NAME (1.0mg/kg) and a mitochondrial KATP channel blocker, 5-HD (10mg/kg) did not abolish while a sarcolemmal KATP channel blocker, HMR 1098 (6.0mg/kg) and a mitochondrial permeability transition pore (MPTP) opener, atractyloside (5.0mg/kg) completely abolished the cardioprotection produced by the EETs. 14,15-EET (1.5mg/kg) with an inhibitor of MPTP opening, cyclosporin A (CsA, 1.0mg/kg) produced a greater reduction of infarct size than their individual administration. Conversely, an EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 2.5mg/kg) completely abolished the cardioprotective effects of CsA, suggesting a role of MPTP in mediating the EET actions. Taken together, these results suggest that the cardioprotective effects of the EETs in an acute ischemia-reperfusion model are mediated by distinct mediators depending on the time of EET administration. The cardioprotective effects of EETs administered prior to ischemia were regulated by the activation of eNOS and increased NO production, while sarcKATP channels and MPTP were involved in the beneficial effects of the EETs when administered just prior to reperfusion.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Heart/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Myocardial Infarction/enzymology , Myocardial Infarction/prevention & control , Nitric Oxide Synthase Type III/metabolism , 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/pharmacology , 8,11,14-Eicosatrienoic Acid/therapeutic use , Animals , Cell Line , Hemodynamics/physiology , Imines/pharmacology , Male , Mitochondrial Permeability Transition Pore , Myocardial Infarction/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/enzymology , Reperfusion Injury/metabolism
4.
J Cardiovasc Pharmacol Ther ; 18(1): 38-45, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22407888

ABSTRACT

The present study further identified factors involved in the cardioprotective phenomenon of remote preconditioning of trauma (RPCT) with special emphasis on the role of the epoxyeicosatrienoic acids (EETs) in mediating this phenomenon. Remote preconditioning of trauma was produced by an abdominal incision only through the skin. Subsequently, all rats were subjected to 30 minutes of left coronary artery occlusion followed by 2 hours of reperfusion and the infarct size was determined. Remote preconditioning of trauma produced a reduction in infarct size expressed as a percentage of the area at risk from 63.0% ± 1.1% to 44.7% ± 1.4%; P < .01 versus control. To test the 3 major triggers of classical preconditioning in mediating RPCT, blockers of the bradykinin B2 receptor (B2BK), (S)-4-[2-[Bis(cyclohexylamino)methyleneamino]-3-(2-naphthalenyl)-1-oxopropylamino]benzyl tributyl phosphonium (WIN 64338, 1 mg/kg, iv), or HOE 140 (50 µg/kg, iv), the nonselective opioid receptor blocker, naloxone (3 mg/kg, iv), or the adenosine A1 receptor blocker, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg/kg, iv) were administered 10 minutes prior to RPCT. Only the 2 B2BK selective antagonists blocked RPCT (60.2% ± 1.1%, WIN 64338; 62.3% ± 2.0%, HOE 140). To test EETs in RPCT, we administered the EET receptor antagonist 14,15-Epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 2.5 mg/kg, iv) or the EET synthesis inhibitor, N-(Methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH, 3.0 mg/kg, iv) 10 minutes prior to RPCT. In both groups, the EET antagonists completely blocked RPCT (62.0% ± 0.8%, 14,15-EEZE; 61.8% ± 1.0%, MSPPOH). The EET antagonists also blocked the effect of B2BK activation. We also determined whether the sarcolemmal K(ATP) or the mitochondrial K(ATP) channel mediate RPCT by pretreating rats with 1-[5-[2-(5-Chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3 methylthiourea, sodium salt (HMR 1098) or 5-hydroxydecanoic acid (5-HD), respectively. Interestingly, 5-HD blocked RPCT (64.7% ± 1.3%), whereas, HMR 1098 did not (50.3% ± 1.3%). The 2 EET antagonists completely blocked capsaicin-induced cardioprotection. These results clearly suggest that EETs mediate RPCT-, bradykinin- and capsaicin-induced cardioprotection in rat hearts.


Subject(s)
Cytochrome P-450 Enzyme System/physiology , Ischemic Preconditioning, Myocardial , Myocardial Infarction/drug therapy , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Capsaicin/pharmacology , Hemodynamics , KATP Channels/physiology , Male , Rats , Rats, Sprague-Dawley , Sarcolemma/physiology , Xanthines/pharmacology
5.
Pharmacology ; 90(1-2): 110-6, 2012.
Article in English | MEDLINE | ID: mdl-22814415

ABSTRACT

BACKGROUND/AIMS: Eribis peptide 94 (EP 94) is a new enkephalin derivative which potently binds to the µ- and δ-opioid receptor. In this study, we determined the effects of EP 94 and potential mechanism(s) involved in cardioprotection of the rat heart. METHODS AND RESULTS: An acute (5 and10 min into ischemia) and a chronic (24 h prior to ischemia) EP 94 administration produced a similar 30-40% reduction in infarct size/area at risk and the effects were blocked by the K(ATP) channel antagonists, HMR 1098 and 5-HD. The cardioprotective effects were blocked by a nonselective nitric oxide synthase (NOS) inhibitor (L-NAME) following acute administration and by a selective iNOS inhibitor (1400W) following chronic administration. CONCLUSION: These results suggest that EP 94 may have potential for the treatment of ischemic heart disease via a nitric oxide (NO)-K(ATP)-mediated mechanism.


Subject(s)
Cardiotonic Agents/therapeutic use , Enkephalins/therapeutic use , KATP Channels/physiology , Myocardial Reperfusion Injury/drug therapy , Nitric Oxide Synthase/physiology , Animals , Benzamides/pharmacology , Cardiotonic Agents/pharmacology , Decanoic Acids/pharmacology , Enkephalins/pharmacology , Hydroxy Acids/pharmacology , KATP Channels/antagonists & inhibitors , Male , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase Type II/physiology , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists
6.
Cell Signal ; 24(7): 1375-80, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22430126

ABSTRACT

Rho-associated coiled-coil containing protein kinase 1 (ROCK1) is a key downstream effector of the small GTPase RhoA. Targeting ROCK1 has shown promising clinical potential in cancer, cardioprotection, hypertension, diabetes, neuronal regeneration, and stem cell biology. General working hypothesis in previous studies has centered on the function of ROCK1 as a downstream sequence in the RhoA signaling pathway. In this study, the effects of the direct inhibition of ROCK1 on the activity of upstream RhoA and Rac1 were examined using a combined pharmacological and genetic approach. We report an intriguing mechanism by which the inhibition of ROCK1 indirectly diminishes the activity of upstream RhoA through the stimulation of Tiam1-induced Rac1 activity. This novel feedback mechanism, in which ROCK1 mediates upstream Rac1 and RhoA activity, offers considerable insight into the diverse effects of ROCK1 on the functional balance of the Rho family of small GTPases, which regulates actin cytoskeleton reorganization processes and the resulting overall behavior of cells.


Subject(s)
Prostatic Neoplasms/genetics , Signal Transduction , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , ADP Ribose Transferases/pharmacology , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Amides/pharmacology , Aminoquinolines/pharmacology , Botulinum Toxins/pharmacology , Cell Line, Tumor , Gene Expression Regulation/drug effects , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Male , Prostatic Neoplasms/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/genetics
7.
J Pharmacol Exp Ther ; 340(1): 210-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22011434

ABSTRACT

Adenosine is increased in ischemic tissues where it serves a protective role by activating adenosine receptors (ARs), including the A3 AR subtype. We investigated the effect of N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarboxamide (LUF6096), a positive allosteric modulator of the A3 AR, on infarct size in a barbital-anesthetized dog model of myocardial ischemia/reperfusion injury. Dogs were subjected to 60 min of coronary artery occlusion and 3 h of reperfusion. Infarct size was assessed by macrohistochemical staining. Three experimental groups were included in the study. Groups I and II received two doses of vehicle or LUF6096 (0.5 mg/kg i.v. bolus), one administered before ischemia and the other immediately before reperfusion. Group III received a single dose of LUF6096 (1 mg/kg i.v. bolus) immediately before reperfusion. In preliminary in vitro studies, LUF6096 was found to exert potent enhancing activity (EC50 114.3 ± 15.9 nM) with the canine A3 AR in a guanosine 5'-[γ-[³5S]thio]triphosphate binding assay. LUF6096 increased the maximal efficacy of the partial A3 AR agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide and the native agonist adenosine more than 2-fold while producing a slight decrease in potency. In the dog studies, administration of LUF6096 had no effect on any hemodynamic parameter measured. Pretreatment with LUF6096 before coronary occlusion and during reperfusion in group II dogs produced a marked reduction in infarct size (∼50% reduction) compared with group I vehicle-treated dogs. An equivalent reduction in infarct size was observed when LUF6096 was administered immediately before reperfusion in group III dogs. This is the first study to demonstrate efficacy of an A3 AR allosteric enhancer in an in vivo model of infarction.


Subject(s)
Adenosine/analogs & derivatives , Myocardial Reperfusion Injury/prevention & control , Receptor, Adenosine A3/drug effects , Adenosine/pharmacology , Animals , Blood Pressure/drug effects , Cardiovascular Agents/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Chromatography, High Pressure Liquid , Dogs , Female , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , HEK293 Cells , Heart Rate/drug effects , Humans , Male , Mass Spectrometry , Radioligand Assay , Ventricular Function, Left/drug effects
8.
Endocrinology ; 153(1): 29-41, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22087025

ABSTRACT

The cannabinoid receptor type 1 (CB1) is a G protein-coupled receptor that is activated in an autocrine fashion by the endocannabinoids (EC), N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). The CB1 and its endogenous and synthetic agonists are emerging as therapeutic targets in several cancers due to their ability to suppress carcinoma cell invasion and migration. However, the mechanisms that the CB1 regulates cell motility are not well understood. In this study, we examined the molecular mechanisms that diminish cell migration upon the CB1 activation in prostate carcinoma cells. The CB1 activation with the agonist WIN55212 significantly diminishes the small GTPase RhoA activity but modestly increases the Rac1 and Cdc42 activity. The diminished RhoA activity is accompanied by the loss of actin/myosin microfilaments, cell spreading, and cell migration. Interestingly, the CB1 inactivation with the selective CB1 antagonist AM251 significantly increases RhoA activity, enhances microfilament formation and cell spreading, and promotes cell migration. This finding suggests that endogenously produced EC activate the CB1, resulting in chronic repression of RhoA activity and cell migration. Consistent with this possibility, RhoA activity is significantly diminished by the exogenous application of AEA but not by 2-AG in PC-3 cells (cells with very low AEA hydrolysis). Pretreatment of cells with a monoacylglycerol lipase inhibitor, JZL184, which blocks 2-AG hydrolysis, decreases the RhoA activity. These results indicate the unique CB1 signaling and support the model that EC, through their autocrine activation of CB1 and subsequent repression of RhoA activity, suppress migration in prostate carcinoma cells.


Subject(s)
Prostatic Neoplasms/metabolism , Receptor, Cannabinoid, CB1/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors , Actins/metabolism , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Benzoxazines/pharmacology , Biological Transport, Active/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Movement/physiology , Endocannabinoids , Glycerides/metabolism , Glycerides/pharmacology , Humans , Male , Morpholines/pharmacology , Myosins/metabolism , Naphthalenes/pharmacology , Piperidines/pharmacology , Polyunsaturated Alkamides , Prostatic Neoplasms/pathology , Prostatic Neoplasms/physiopathology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism
9.
J Cardiovasc Pharmacol ; 59(2): 194-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22130105

ABSTRACT

Eribis peptide 94 (EP 94) is a novel enkephalin derivative that binds with high potency to µ and δ opioid receptors with less affinity for the κ opioid receptor. This compound has recently been shown to produce an acute reduction in myocardial infarct size in the anesthetized pig and rat partially via an endothelial nitric oxide synthase and KATP channel-dependent mechanism. EP 94 also was found to produce a chronic reduction in infarct size 24 hours postdrug administration via the upregulation of inducible nitric oxide synthase in rats. Despite these findings, no data have emerged in which the opioid receptor subtype responsible for cardioprotection has been identified and the site of action, heart, other peripheral organs, or the central nervous system, has not been addressed. In the current study, EP 94, was administered in 2 divided doses (0.5 µg/kg, intravenously) at 5 and 10 minutes into the ischemic period, and the opioid antagonists were administered 10 minutes before the onset of the 30-minute ischemic period. The selective antagonists used were the µ receptor antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2), the δ receptor antagonists naltrindole and BNTX (7-benzylidenenaltrexone), and the κ receptor antagonist nor-BNI (norbinaltorphimine). Surprisingly, only CTOP completely blocked the cardioprotective effect of EP 94, whereas naltrindole, BNTX, and nor-BNI had modest but nonsignificant effects. Because there is controversial evidence suggesting that µ receptors may be absent in the adult rat myocardium, it was hypothesized that the protective effect of EP 94 may be mediated by an action outside the heart, perhaps in the central nervous system. To test this hypothesis, rats were pretreated with the nonselective opioid antagonist, naloxone hydrochloride, which penetrates the blood-brain barrier or naloxone methiodide, the quaternary salt of naloxone hydrochloride, which does not penetrate the blood-brain barrier before EP 94 administration. In support of a central nervous system site of action for EP 94, naloxone hydrochloride completely blocked its cardioprotective effect, whereas naloxone methiodide had no effect. These results suggest that EP 94 reduces infarct size (expressed as a percent of the area at risk) in the rat primarily via activation of central µ opioid receptors.


Subject(s)
Enkephalins/pharmacology , Myocardial Infarction/drug therapy , Narcotic Antagonists/pharmacology , Receptors, Opioid, mu/agonists , Animals , Blood-Brain Barrier/metabolism , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/pharmacology , Enkephalins/administration & dosage , Male , Myocardial Infarction/pathology , Narcotic Antagonists/administration & dosage , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism
10.
Cardiovasc Drugs Ther ; 25(6): 517-22, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21786213

ABSTRACT

OBJECTIVE: Recently, a novel observation was made in which nonischemic trauma at a site remote from the heart produced by a transverse abdominal incision resulted in a marked reduction of infarct size (IS) in the mouse heart via activation of sensory nerve fibers in the skin and subsequent activation of bradykinin 2 receptors (BK2R). This phenomenon was termed remote preconditioning of trauma (RPCT). Since RPCT may have potential clinical implications we attempted to confirm these findings in a large animal model, the dog. The epoxyeicosatrienoic acids (EETs) have also recently been shown to be antinociceptive and have been shown to mimic ischemic preconditioning (IPC) and postconditioning (POC) in dogs, therefore, we tested the role of the EETs in RPCT. METHODS: Anesthetized adult mongrel dogs of either sex were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion followed by 3 h of reperfusion. In all groups except the controls (no slit), a transverse slit (9 cm) was applied to the abdominal wall of the dog being careful to only slit the skin. Subsequently, 15 min after the slit the heart was subjected to the ischemia/reperfusion protocol. RESULTS: In the control dogs, the IS as a percent of the area at risk (AAR) was 22.5 ± 2.4%, whereas in the dogs subjected to the slit alone the IS/AAR was reduced to 9.2 ± 1.2% (*P < 0.01). The BR2R blocker, HOE 140 (50 ug/kg, iv) given 10 min prior to the slit, completely abolished the protective effects of RCPT as did pretreatment with 14,15-EEZE, a putative EET receptor blocker or pretreatment with the selective EET synthesis inhibitor, MSPPOH. CONCLUSIONS: These results suggest that BK and the EETs share cardioprotective properties in a large animal model of RPCT.


Subject(s)
Abdomen/surgery , Cytochrome P-450 Enzyme System/metabolism , Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/prevention & control , Myocardium , Receptor, Bradykinin B2/metabolism , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Bradykinin/analogs & derivatives , Bradykinin/pharmacology , Bradykinin B2 Receptor Antagonists , Coronary Circulation/drug effects , Cytochrome P-450 Enzyme Inhibitors , Disease Models, Animal , Dogs , Female , Hemodynamics/drug effects , Ischemic Postconditioning/methods , Male , Myocardial Infarction/enzymology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/enzymology , Myocardium/metabolism , Myocardium/pathology
11.
Am J Physiol Heart Circ Physiol ; 300(6): H2064-71, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21460202

ABSTRACT

This study explored the hypothesis that a portion of angiotensin II-induced contractions is dependent on superoxide generation and release of a previously unidentified arachidonic acid metabolite that activates vascular smooth muscle thromboxane receptors. Treatment of rabbit aorta or mesentery artery with the thromboxane receptor antagonist SQ29548 (10 µM) reduced angiotensin II-induced contractions (maximal contraction in aorta; control vs. SQ29548: 134 ± 16 vs. 93 ± 10%). A subset of rabbits deficient in vascular thromboxane receptors also displayed decreased contractions to angiotensin II. The superoxide dismutase mimetic Tiron (30 mM) attenuated angiotensin II-induced contractions only in rabbits with functional vascular thromboxane receptors (maximal contraction in aorta; control vs. Tiron: 105 ± 5 vs. 69 ± 11%). Removal of the endothelium or treatment with a nitric oxide synthase inhibitor, nitro-l-arginine (30 µM) did not alter angiotensin II-induced contractions. Tiron and SQ29548 decreased angiotensin II-induced contractions in the denuded aortas by a similar percentage as that observed in intact vessels. The cyclooxygenase inhibitor indomethacin (10 µM) or thromboxane synthase inhibitor dazoxiben (10 µM) had no effect on angiotensin II-induced contractions indicating that the vasoconstrictor was not thromboxane. Angiotensin II increased the formation of a 15-series isoprostane. Isoprostanes are free radical-derived products of arachidonic acid. The unidentified isoprostane increased when vessels were incubated with the superoxide-generating system xanthine/xanthine oxidase. Pretreatment of rabbit aorta with the isoprostane isolated from aortic incubations enhanced angiotensin II-induced contractions. Results suggest the factor activating thromboxane receptors and contributing to angiotensin II vasoconstriction involves the superoxide-mediated generation of a 15-series isoprostane.


Subject(s)
Angiotensin II/pharmacology , Aorta, Thoracic/metabolism , Mesenteric Arteries/metabolism , Receptors, Thromboxane/metabolism , Superoxides/metabolism , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Animals , Aorta, Thoracic/drug effects , Arachidonic Acid/metabolism , Cyclooxygenase Inhibitors/pharmacology , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Indomethacin/pharmacology , Isoprostanes/metabolism , Male , Mesenteric Arteries/drug effects , Models, Animal , Muscle, Smooth, Vascular , Rabbits , Vasoconstriction/physiology
12.
Prostaglandins Other Lipid Mediat ; 94(1-2): 34-43, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21167293

ABSTRACT

Endocannabinoids (ECs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), inhibit proliferation of carcinoma cells. Several enzymes hydrolyze ECs to reduce endogenous EC concentrations and produce eicosanoids that promote cell growth. In this study, we determined the effects of EC hydrolysis inhibitors and a putative EC, 2-arachidonylglyceryl ether (noladin ether, NE) on proliferation of prostate carcinoma (PC-3, DU-145, and LNCaP) cells. PC-3 cells had the least specific hydrolysis activity for AEA and administration of AEA effectively inhibited cell proliferation. The proliferation inhibition was blocked by SR141716A (a selective CB1R antagonist) but not SR144528 (a selective CB2R antagonist), suggesting a CB1R-mediated inhibition mechanism. On the other hand, specific hydrolysis activity for 2-AG was high and 2-AG inhibited proliferation only in the presence of EC hydrolysis inhibitors. NE inhibited proliferation in a concentration-dependent manner; however, SR141716A, SR144528 and pertussis toxin did not block the NE-inhibited proliferation, suggesting a CBR-independent mechanism of NE. A peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662 did not block the NE-inhibited proliferation, suggesting that PPARγ was not involved. NE also induced cell cycle arrest in G(0)/G(1) phase in PC-3 cells. NE inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB p65) and down-regulated the expression of cyclin D1 and cyclin E in PC-3 cells, suggesting the NF-κB/cyclin D and cyclin E pathways are involved in the arrest of G1 cell cycle and inhibition of cell growth. These results indicate therapeutic potentials of EC hydrolysis inhibitors and the enzymatically stable NE in prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cannabinoid Receptor Modulators/pharmacology , Endocannabinoids , Glycerides/pharmacology , Prostatic Neoplasms/metabolism , Anilides/pharmacology , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Cyclin E/metabolism , Humans , Male , NF-kappa B/metabolism , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology
13.
Cancer Sci ; 101(12): 2629-36, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20804500

ABSTRACT

Cytochrome P450 (CYP) epoxygenases, CYP2C8, 2C9 and 2J2 mRNA and proteins, were expressed in prostate carcinoma (PC-3, DU-145 and LNCaP) cells. 11,12-Epoxyeicosatrienoic acid (11,12-EET) was the major arachidonic acid metabolite in these cells. Blocking EET synthesis by a selective CYP epoxygenase inhibitor (N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide [MS-PPOH]) inhibited tonic (basal) invasion and migration (motility) while exogenously added EET induced cell motility in a concentration-dependent manner. An epidermal growth factor receptor (EGFR) kinase inhibitor (AG494) or a PI3 kinase inhibitor (LY294002) inhibited cell migration and reduced 11,12-EET-induced cell migration. Importantly, synthetic EET antagonists (14,15-epoxyeicosa-5(Z)-enoic acid [14,15-EEZE], 14,15-epoxyeicosa-5(Z)-enoic acid 2-[2-(3-hydroxy-propoxy)-ethoxy]-ethyl ester [14,15-EEZE-PEG] and 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonylimide [14,15-EEZE-mSI]) inhibited EET-induced cell invasion and migration. 11,12-EET induced cell stretching and myosin-actin microfilament formation as well as increased phosphorylation of EGFR and Akt (Ser473), while 14,15-EEZE inhibited these effects. These results suggest that EET induce and EET antagonists inhibit cell motility, possibly by putative EET receptor-mediated EGFR and PI3K/Akt pathways, and suggest that EET antagonists are potential therapeutic agents for prostate cancer.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Carcinoma/metabolism , Cell Movement/drug effects , Prostatic Neoplasms/metabolism , 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/pharmacology , Blotting, Western , Cell Line, Tumor , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/metabolism , Fluorescent Antibody Technique , Humans , Male , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology
14.
Am J Physiol Heart Circ Physiol ; 298(6): H2201-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20400686

ABSTRACT

We previously demonstrated that several epoxyeicosatrienoic acids (EETs) produce reductions in myocardial infarct size in rats and dogs. Since a recent study demonstrated the release of opioids in mediating the antinociceptive effect of 14,15-EET, we hypothesized that endogenous opioids may also be involved in mediating the cardioprotective effect of the EETs. To test this hypothesis, we used an in vivo rat model of infarction and a rat Langendorff model. In the infarct model, hearts were subjected to 30 min occlusion of the left coronary artery and 2 h reperfusion. Animals were treated with 11,12-EET or 14,15-EET (2.5 mg/kg) alone 15 min before occlusion or with opioid antagonists [naloxone, naltrindole, nor-binaltorphimine (nor-BNI), and d-Phe-Cys-Tyr-d-Trp-Om-Thr-Pen-Thr-NH(2) (CTOP), a nonselective, a selective delta, a selective kappa, and a selective mu receptor antagonist, respectively] 10 min before EET administration. In four separate groups, antiserum to Met- and Leu-enkephalin and dynorphin-A-(1-17) was administered 50 min before the 11,12-EET administration. Infarct size expressed as a percent of the area at risk (IS/AAR) was 63.5 + or - 1.2, 45.3 + or - 1.0, and 40.9 + or - 1.2% for control, 11,12-EET, and 14,15-EET, respectively. The protective effects of 11,12-EET were abolished by pretreatment with either naloxone (60.5 + or - 1.8%), naltrindole (60.8 + or - 1.0%), nor-BNI (62.3 + or - 2.8%), or Met-enkephalin antiserum (63.2 + or - 1.7%) but not CTOP (42.0 + or - 3.0%). In isolated heart experiments, 11,12-EET was administered to the perfusate 15 min before 20 min global ischemia followed by 45 min reperfusion in control hearts or in those pretreated with pertussis toxin (48 h). 11,12-EET increased the recovery of left ventricular developed pressure from 33 + or - 1 to 45 + or - 6% (P < 0.05) and reduced IS/AAR from 37 + or - 4 to 20 + or - 3% (P < 0.05). Both pertussis toxin and naloxone abolished these beneficial effects of 11,12-EET. Taken together, these results suggest that the major cardioprotective effects of the EETs depend on activation of a G(i/o) protein-coupled delta- and/or kappa-opioid receptor.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Analgesics, Opioid , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , 8,11,14-Eicosatrienoic Acid/therapeutic use , Analgesics, Opioid/antagonists & inhibitors , Animals , Disease Models, Animal , GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Male , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/physiopathology , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid/physiology , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
15.
J Cardiovasc Pharmacol Ther ; 15(2): 112-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20200327

ABSTRACT

Recent evidence from a number of in vitro and in vivo studies in isolated cells and animal models has suggested that the cytochrome P450 (CYP450) pathway of arachidonic acid (AA) metabolism produces potent cardioprotective metabolites that markedly reduce reversible (myocardial stunning) and irreversible (infarct size [IS]) injury in the ischemic/reperfused heart. The major players in this protective response appear to be the AA metabolites including the regioisomers of 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs). The present review article will discuss the beneficial effects of the EETs on myocardial stunning and IS reduction and consider some of the signaling pathways and cellular mechanisms by which the EETs produce their beneficial effects and the possible therapeutic benefits that may result from activation of this pathway. The results discussed in this review are taken from experiments obtained from 3 diverse species in different laboratories: the mouse, rat, and dog, in which the results were nearly identical qualitatively and quantitatively, suggesting that these findings are likely to be extrapolated to man as well.


Subject(s)
Arachidonic Acids/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Stunning/metabolism , Animals , Arachidonic Acid/metabolism , Cytochrome P-450 Enzyme System/metabolism , Mitochondria/metabolism , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Stunning/physiopathology , Natriuretic Peptide, Brain/metabolism
16.
Front Physiol ; 1: 157, 2010.
Article in English | MEDLINE | ID: mdl-21423396

ABSTRACT

Epoxyeicosatrienoic acids (EETs) contribute importantly to the regulation of vascular tone and blood pressure control. The purpose of this study was to develop stable EET analogs and test their in vivo blood pressure lowering effects in hypertensive rats. Using the pharmacophoric moiety of EETs, ether EET analogs were designed with improved solubility and resistance to auto-oxidation and metabolism by soluble epoxide hydrolase. Ether EET analogs were chosen based on their ability to dilate afferent arterioles and subsequently tested for blood pressure lowering effects in rodent models of hypertension. Initially, 11,12-ether-EET-8-ZE failed to lower blood pressure in angiotensin hypertension or spontaneously hypertensive rats (SHR). Esterification of the carboxylic group of 11,12-ether-EET-8-ZE prevented blood pressure increase in SHR when injected at 2 mg/day for 12 days (MAP Δ change at day 8 of injection was -0.3 ± 2 for treated and 12 ± 1 mmHg for control SHR). Amidation of the carboxylic group with aspartic acid produced another EET analog (NUDSA) with a blood pressure lowering effect when injected at 3 mg/day in SHR for 5 days. Amidation of the carboxylic group with lysine amino acid produced another analog with minimal blood pressure lowering effect. These data suggest that esterification of the carboxylic group of 11,12-ether-EET-8-ZE produced the most effective ether-EET analog in lowering blood pressure in SHR and provide the first evidence to support the use of EET analogs in treatment of cardiovascular diseases.

17.
Hypertension ; 55(2): 547-54, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20038752

ABSTRACT

Adrenic acid (docosatetraenoic acid), an abundant fatty acid in the adrenal gland, is identical to arachidonic acid except for 2 additional carbons on the carboxyl end. Adrenic acid is metabolized by cyclooxygenases, cytochrome P450s, and lipoxygenases; however, little is known regarding the role of adrenic acid and its metabolites in vascular tone. Because of its abundance in the adrenal gland, we investigated the role of adrenic acid in vascular tone of bovine adrenal cortical arteries and its metabolism by bovine adrenal zona glomerulosa cells. In adrenal cortical arteries, adrenic acid caused concentration-dependent relaxations, which were inhibited by the epoxyeicosatrienoic acid antagonist 14,15-epoxyeicosa-5(Z)-enoic acid and the cytochrome P450 inhibitor SKF-525A. The large-conductance calcium-activated potassium channel blocker iberiotoxin or removal of the endothelium abolished these relaxations. Reverse-phase high-pressure liquid chromatography and liquid chromatography/mass spectrometry isolated and identified numerous adrenic acid metabolites from zona glomerulosa cells, including dihomo-epoxyeicosatrienoic acids and dihomo-prostaglandins. In denuded adrenal cortical arteries, adrenic acid caused concentration-dependent relaxations in the presence of zona glomerulosa cells but not in their absence. These relaxations were inhibited by SKF-525A, 14,15-epoxyeicosa-5(Z)-enoic acid, and iberiotoxin. Dihomo-16,17-epoxyeicosatrienoic acid caused concentration-dependent relaxations of adrenal cortical arteries, which were inhibited by 14,15-epoxyeicosa-5(Z)-enoic acid and high potassium. Our results suggest that adrenic acid relaxations of bovine adrenal cortical arteries are mediated by endothelial and zona glomerulosa cell cytochrome P450 metabolites. Thus, adrenic acid metabolites could function as endogenous endothelium-derived and zona glomerulosa-derived hyperpolarizing factors in the adrenal cortex and contribute to the regulation of adrenal blood flow.


Subject(s)
Adrenal Glands/metabolism , Erucic Acids/metabolism , Erucic Acids/pharmacology , Proadifen/pharmacology , Adrenal Glands/blood supply , Analysis of Variance , Animals , Biological Factors/metabolism , Cattle , Cells, Cultured , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme System/metabolism , Endothelium, Vascular/metabolism , Fatty Acids, Unsaturated , Potassium Channels, Calcium-Activated/pharmacology , Probability , Vascular Resistance/drug effects , Vascular Resistance/physiology , Vasodilation/drug effects , Vasodilation/physiology , Zona Glomerulosa/blood supply , Zona Glomerulosa/metabolism
18.
J Biol Chem ; 284(45): 31280-90, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19737933

ABSTRACT

Arachidonic acid (AA) is metabolized by endothelial 15-lipoxygenase (15-LO) to several vasodilatory eicosanoids such as 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) and its proposed unstable precursor 15-hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). In the present study, the acid-stable 13-hydroxy-trans-14,15-epoxy-eicosatrienoic acid (13-H-14,15-EETA) was identified and its vascular activities characterized. Rabbit aorta, mesenteric arteries, and the combination of 15-LO and cytochrome P450 2J2 converted AA to two distinct HEETA metabolites. The HEETA metabolites were resistant to acidic hydrolysis but were hydrolyzed by recombinant sEH to a more polar metabolite identified by mass spectrometry as 13,14,15-THETA. Mass spectrometric analyses and HPLC comigration identified the HEETAs as threo- and erythro-diastereomers of 13-H-trans-14,15-EETA. Erythro- and threo-diastereomers of 13-H-trans-14,15-EETA relaxed endothelium-denuded rabbit small mesenteric arteries with maximum relaxations of 22.6 +/- 6.0% and 8.6 +/- 4.3%, respectively. Apamin (10(-7) m) inhibited the relaxations to the erythro-isomer (maximum relaxation = 1.2 +/- 5.6%) and increasing [K(+)](o) from 4.6 to 30 mm blocked relaxations to both isomers. In cell-attached patches of mesenteric arterial smooth muscle cells (SMCs), erythro-13-H-trans-14,15-EETA (1-3 x 10(-6) m) increased mean open time of small conductance K(+) channels (13-14 pS) from 0.0007 +/- 0.0007 to 0.0053 +/- 0.0042. This activation was inhibited by apamin. The erythro, but not the threo, isomer blocked angiotensin II-stimulated aortic SMC migration. These studies demonstrate that 13-H-14,15-EETAs induces vascular relaxation via K(+) channel activation to cause SMC hyperpolarization. Thus, 13-H-14,15-EETA represents a new endothelial factor.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/metabolism , Arteries/metabolism , Endothelium, Vascular/metabolism , Vasodilator Agents/metabolism , 8,11,14-Eicosatrienoic Acid/chemistry , Acids/pharmacology , Animals , Arachidonic Acid/metabolism , Arteries/chemistry , Arteries/cytology , Arteries/drug effects , Endothelium, Vascular/chemistry , Endothelium, Vascular/drug effects , In Vitro Techniques , Rabbits , Vasodilator Agents/chemistry
19.
Methods Mol Biol ; 579: 161-87, 2009.
Article in English | MEDLINE | ID: mdl-19763475

ABSTRACT

Eicosanoids are oxygenated, endogenous, unsaturated fatty acids derived from arachidonic acid. Detection and quantification of these compounds are of great interest because they play important roles in a number of significant diseases, including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cancer. Because the endogenous levels of eicosanoids are quite low, sensitive and specific analytical methods are required to reliably quantify these compounds. High-performance liquid chromatography mass spectrometry (HPLC/MS) has emerged as one of the main techniques used in eicosanoid profiling. Herein, we describe the main LC/MS techniques and principles as well as their application in eicosanoid analysis. In addition, a protocol is given for extracting eicosanoids from biological samples, using bronchoalveolar lavage fluid (BALF) as an example. The method and instrument optimization procedures are presented, followed by the analysis of eicosanoid standards using reverse phase HPLC interfaced with an ion trap mass spectrometer (LC/MS/MS). This protocol is intended to provide a broad description of the field for readers looking for an introduction to the methodologies involved in eicosanoid quantification.


Subject(s)
Chromatography, High Pressure Liquid/methods , Eicosanoids/analysis , Tandem Mass Spectrometry/methods , Bronchoalveolar Lavage Fluid , Cyclotrons , Fourier Analysis
20.
Am J Physiol Heart Circ Physiol ; 297(1): H47-52, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19448143

ABSTRACT

Cytochrome P-450 (CYP) epoxygenases and their arachidonic acid (AA) metabolites, the epoxyeicosatrienoic acids (EETs), have been shown to produce marked reductions in infarct size (IS) in canine myocardium either given before an ischemic insult or at reperfusion similar to that produced in ischemic preconditioning (IPC) and postconditioning (POC) protocols. However, no studies have addressed the possibility that EETs serve a beneficial role in IPC or POC. We tested the hypothesis that EETs may play a role in these two phenomena by preconditioning dog hearts with one 5-min period of total coronary occlusion followed by 10 min of reperfusion before 60 min of occlusion and 3 h of reperfusion or by postconditioning with three 30-s periods of reperfusion interspersed with three 30-s periods of occlusion. To test for a role of EETs in IPC and POC, the selective EET antagonists 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) or its derivative, 14,15-epoxyeicosa-5(Z)-enoic acid 2-[2-(3-hydroxy-propoxy)-ethoxy]-ethyl ester (14,15-EEZE-PEG), were administered 10 min before IPC, 5 min after IPC, or 5 min before POC. In a separate series, the selective EET synthesis inhibitor N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH) was administered 10 min before IPC. Infarct size was determined by tetrazolium staining and coronary collateral blood flow at 30 min of occlusion and reperfusion flow at 3 h by radioactive microspheres. Both IPC and POC produced nearly equivalent reductions in IS expressed as a percentage of the area at risk (AAR) [Control 21.2 +/- 1.2%, IPC 8.3 +/- 2.2%, POC 10.1 +/- 1.8% (P < 0.001)]. 14,15-EEZE, 14,15-EEZE-PEG, and MS-PPOH markedly attenuated the cardioprotective effects of IPC and POC (14,15-EEZE and 14,15-EEZE-PEG) at doses that had no effect on IS/AAR when given alone. These results suggest a unique role for endogenous EETs in both IPC and POC.


Subject(s)
Eicosanoids/physiology , Heart/physiology , Ischemic Preconditioning, Myocardial , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/pharmacology , Amides/pharmacology , Animals , Blood Pressure/physiology , Coronary Circulation/physiology , Dogs , Eicosanoids/antagonists & inhibitors , Eicosanoids/biosynthesis , Female , Heart Rate/physiology , Male , Myocardial Infarction/pathology , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...