Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 28(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36838729

ABSTRACT

Electrochromism of organic compounds is a well-known phenomenon; however, nowadays, most research is focused on anodic coloring materials. Development of efficient, cathodic electrochromic materials is challenging due to the worse stability of electron accepting materials compared with electron donating ones. Nevertheless, designing stable cathodic coloring organic materials is highly desired-among other reasons-to increase the coloration performance. Hence, four phthalimide derivatives named 1,5-PhDI, 1,4-PhDI, 2,6-PhDI and 3,3'-PhDI were synthesized and analyzed in depth. In all cases, two imide groups were connected via naphthalene (1,5-PhDI, 1,4-PhDI, 2,6-PhDI) or 3,3'-dimethylnaphtidin (3,3'-PhDI) bridge. To observe the effect of chemical structure on physicochemical properties, various positions of imide bond were considered, namely, 1,5- 1,4- and 2,6-. Additionally, a compound with the pyromellitic diimide unit capped with two 1-naphtalene substituents was obtained. All compounds were studied in terms of their thermal behavior, using differential calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, electrochemical (CV, DPV) and spectroelectrochemical (UV-Vis and EPR) analyses were performed to evaluate the obtained materials in terms of their application as cathodic electrochromic materials. All obtained materials undergo reversible electrochemical reduction which leads to changes in their optical properties. In the case of imide derivatives, absorption bands related to both reduced and neutral forms are located in the UV region. However, importantly, the introduction of the 3,3'-dimethylnaphtidine bridge leads to a noticeable bathochromic shift of the reduced form absorption band of 3,3'-PhDI. This indicates that optimization of the phthalimide structure allows us to obtain stable, cathodic electrochromic materials.


Subject(s)
Phthalimides , Electrodes
2.
Materials (Basel) ; 15(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36363086

ABSTRACT

In this study, lithium borohydride (LiBH4) reduction was used to modify the surface chemistry of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibers. Although the most common reaction employed in the surface treatment of polyester materials is hydrolysis, it is not suitable for fiber modification of bacterial polyesters, which are highly resistant to this type of reaction. The use of LiBH4 allowed the formation of surface hydroxyl groups under very mild conditions, which was crucial for maintaining the fibers' integrity. The presence of these groups resulted in a noticeable improvement in the surface hydrophilicity of PHBV, as revealed by contact angle measurements. After the treatment with a LiBH4 solution, the electrospun PHBV fibrous mat had a significantly greater number of viable osteoblast-like cells (SaOS-2 cell line) than the untreated mat. Moreover, the results of the cell proliferation measurements correlated well with the observed cell morphology. The most flattened SaOS-2 cells were found on the surface that supported the best cell attachment. Most importantly, the results of our study indicated that the degree of surface modification could be controlled by changing the degradation time and concentration of the borohydride solution. This was of great importance since it allowed optimization of the surface properties to achieve the highest cell-proliferation capacity.

3.
Materials (Basel) ; 15(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36295266

ABSTRACT

Three new azomethines based on triphenylamine with two or three substituents were obtained. Chemical structure and purity were confirmed by 1H NMR, FTIR elemental analysis and mass spectroscopy. The investigations were focused on the relationship between chemical structure and properties important for optoelectronic materials. Thus, the studies of thermal, optical and electrochemical properties were carried out based on differential scanning calorimetry, thermogravimetric analysis, electronic absorption, photoluminescence and cyclic voltammetry measurements. The ongoing consideration of experimental results was complemented by theoretical calculations using the density functional theory method. The donor activity of obtained compounds was tested in bulk-heterojuntion photovoltaic cells with structure ITO/PEDOT:PSS/imine:PCBM/Al and ITO/PEDOT:PSS/imine:P3HT:PCBM/Al). The effect of the presence of the amino-thiophene-3,4-dicarboxylic acid diethyl ester groups and various number of hexyloxyphenyl units on imines properties was demonstrated.

4.
Int J Mol Sci ; 23(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35628586

ABSTRACT

The paper presents synthesis and characterization of nine new thiazolyl-(phenyldiazenyl)-2H-chromen-2-one dyes. The impact of substituent structure in thiazole ring in the synthesized azocoumarin derivatives on electrochemical properties, photoisomerization process and photovoltaic response was examined. The dyes were electrochemically active and undergo reduction and oxidation processes. They showed low electrochemically estimated energy band gap in the range of 1.71-2.13 eV. Photoisomerization process of the synthesized molecules was studied in various solvents such as ethanol, chloroform and N,N-dimethylformamide (DMF) upon the UV illumination. It was found that novel azodyes showed reversible trans-cis-trans isomerization and exhibited long thermal back to the trans form, that was even 7 days in DMF. Selected azocoumarin were molecularly dispersed in polystyrene for preparation of guest-host azopolymer systems to study the cis-trans thermal isomerization of obtained dyes in solid state. The photovoltaic activity of the azochromophores was tested in bulk-heterojunction solar cells. They acting as weak donors in device with structure ITO/PEDOT:PSS/dye:PC70BM/Al. No photovoltaic response of cells with azocoumarin derivatives bearing 4-fluorobenzene, 3,4-dichlorobenzene, or 4-(1-adamantyl) unit was found. Additionally, dye which showed the best activity was examined in three-component solar cells ITO/PEDOT:PSS/PTB7:PC70BM:dye/PFN/Al.


Subject(s)
Coloring Agents , Coloring Agents/chemistry , Oxidation-Reduction
5.
Polymers (Basel) ; 14(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35267679

ABSTRACT

Optical and structural properties of a blend thin film of (1:1 wt.) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) doped with iodine (I2) and then exposed to a stepwise heating were reported and compared with the properties of doped P3HT films. The UV-Vis(T) absorption measurements were performed in situ during annealing runs, at the precisely defined temperatures, in a range of 20-210 °C. It was demonstrated that this new method allows one to observe the changes of absorption spectra, connected with the iodine release and other structural processes upon annealing. In addition, the thermally-induced changes of the exciton bandwidth (W) and the absorption edge parameters, i.e., the energy gap (EG) and the Urbach energy (EU) were discussed in the context of different length of conjugation and the structural disorder in polymers and blends films. During annealing, several stages were distinguished and related to the following processes as: the iodine escape and an increase in P3HT crystallinity, the orderly stacking of polymer chains, the thermally inducted structural defects and the phase separation caused by an aggregation of PCBM in the polymer matrix. Moreover, the detailed X-ray diffraction studies, performed for P3HT and P3HT:PCBM films, before and after doping and then after their thermal treatment, allowed us to consider the structural changes of polymer and blend films. The effect of iodine content and the annealing process on the bulk heterojunction (BHJ) solar cells parameters was checked, by the impedance spectroscopy (IS) measurements and the J-V characteristics registration. All of the investigated P3HT:PCBM blend films showed the photovoltaic effect; the increase in power conversion efficiency (PCE) upon iodine doping was demonstrated.

6.
J Phys Chem B ; 125(30): 8588-8600, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34313112

ABSTRACT

Three polyazomethines and their corresponding model compounds were protonated with trifluoroacetic acid, and its effect on their optical (UV-vis absorption and photoluminescence) properties and electrochemical behavior has been studied, in the context of the presence and elongation of alkoxy side groups. Moreover, the effect of environment dielectric constants (i.e., polarity of the solvent) was considered on the doping process. It has been proven that the presence of alkoxy side groups is necessary for protonation to occur, while unsubstituted compounds undergo hydrolysis to constitutive units. Acid doping of imines consisting of alkoxy side chains has resulted in a distinct bathochromic shift (>200 nm) of the low-energy absorption band. Even the length of alkyl chains has not affected the position of shifted bands; it has been observed that azomethines with smaller, methoxy side groups undergo the protonation process much faster than their octyloxy-substituted analogues, due to the absence of steric hindrance. The electrochemical studies of these alkoxy-substituted imines have indicated a better p-type behavior after protonation induced by the capability of the protonated form to easily oxidize in acetonitrile and to generate the native molecules. The environmental polarity has also had impact on the doping process, which took place only in low-polar media.


Subject(s)
Schiff Bases , Thiophenes , Alcohols , Imines , Solvents
7.
Polymers (Basel) ; 13(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810519

ABSTRACT

Three novel conjugated polyazomethines have been obtained by polycondensation of diamines consisting of the diimine system, with either 2,5-bis(octyloxy)terephthalaldehyde or 9-(2-ethylhexyl)carbazole-3,6-dicarboxaldehyde. Partial replacement of bulky solubilizing substituents with the smaller side groups has allowed to investigate the effect of supramolecular organization. All obtained compounds have been subsequently identified using the NMR and FTIR spectroscopies and characterized by the thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry, UV-Vis spectroscopy, and X-ray diffraction. Investigated polymers have shown a good thermal stability and high glass transition temperatures. X-ray measurements have proven that partial replacement of octyloxy side chains with smaller methoxy groups induced a better planarization of macromolecule. Such modification has tuned the LUMO level of this molecule and caused a bathochromic shift of the lowest energy absorption band. On the contrary, imines consisting of N-ethylhexyl substituted carbazole units have not been so clearly affected by alkyl chain length modification. Photovoltaic activity of imines (acting as a donor) in bulk-heterojunction systems has been observed for almost all studied compounds, blended with the fullerene derivative (PCBM) in various weight ratios.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119242, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33296751

ABSTRACT

The influence of presence and elongation of alkoxy side chains in the π-conjugated Schiff-bases has been considered on the basis of UV-Vis absorption and photoluminescence spectra of model compounds and polymers solutions in chloroform and binary solvents of different polarity. The results of these investigations have been supported by electrochemical data. It has been demonstrated that introduction of electron donating methoxy side groups decreases the energy gap, however the elongation of alkyl chains only slightly affects the electronic structure of model compounds. In the case of polymers, such octyloxy side chains improves the solubility, enabling formation of longer polymer chains, with the enhanced effective π-conjugation length and narrower energy gap, however the intensity of emission band clearly decreased. Positive solvatochromism has been observed in both absorbance and photoluminescence spectra for all investigated compounds. As the concluding task, bulk-heterojunction (BHJ) photovoltaic (PV) structures, consisting of polyazomethines blended with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) have been prepared and tested in the context of potential application in solar cells. All investigated polymers have shown the photovoltaic effect, but the best power conversion efficiency and other PV parameters have been obtained for polyazomthine with octyloxy side chains.

9.
Beilstein J Nanotechnol ; 9: 1108-1115, 2018.
Article in English | MEDLINE | ID: mdl-29719761

ABSTRACT

In this work we present an in-depth study of the how the composition of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend films influences their phase transitions using variable-temperature spectroscopic ellipsometry. We demonstrate that this non-destructive method is a very sensitive optical technique to investigate the phase transitions and to determine the glass transition temperatures and melting crystallization points of the P3HT:PCBM blend films. By analyzing the influence of the temperature T on the raw ellipsometric data, we have identified a high sensitivity of the ellipsometric angle Δ at a wavelength of 280 nm to temperature changes. Characteristic temperatures determined from the slope changes of the Δ(T) plot appeared to be very good guess values for the phase transition temperatures.

10.
Polymers (Basel) ; 10(5)2018 May 01.
Article in English | MEDLINE | ID: mdl-30966521

ABSTRACT

The presented study describes the method for the synthesis and characterization of a new class of conjugated copolymers containing a perylenediimide (PDI) and naphthalene diimide (NDI) side groups. The main conjugated backbone is a donor-acceptor polymer poly[3,6-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] containing thiophene and carbazole as donor units and benzothiadiazole as an acceptor unit. The presented compounds were synthesized in a multistep synthesis. The polymerization was carried out by Suzuki or Stille coupling reaction. Redox properties of the studied polymers were tested in different conditions. Electrochemical investigation revealed independent reduction of the main polymer chain and diimide side groups. UV-Vis spectroscopy revealed the overlap of two absorption spectra. The difference between the electron affinity of the polymer main chain and that of the diimides estimated electrochemically is approximately 0.3 eV.

11.
Polymers (Basel) ; 10(10)2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30960989

ABSTRACT

A new type of polysiloxane copolymers, with conjugated⁻regioregular poly(3-hexylthiophene) (P3HT) and non-conjugated-poly(ethylene glycol) (PEG)-grafts have been synthesised, and their properties have been studied alongside those of the parent conjugated polymer (P3HT). Spectroelectrochemical and conductometric analyses revealed an early rise of the conductance of the polymers. Once spectral changes begin taking place, the conductance is stable, implying a loss of mobility of charge carriers, even though standard doping/dedoping patterns are observed. Prototype bulk heterojunction solar cells have been fabricated, based on P3HT/[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM), as well as by substituting P3HT for each of the copolymers. The prototype solar cells achieved PCEs of up to 2.11%. This is one of the highest reported power conversion efficiency (PCE) for devices based on P3HT with low average molecular weight Mn = 12 kDa. Strong correlation between the structure of the copolymer and its photovoltaic performance was found. Elongation of PEG copolymer chain and the use of methyl group instead of terminal hydroxyl groups significantly improved photovoltaic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...