Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 122: 345-352, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39163909

ABSTRACT

Neuroinflammation is a key component underlying multiple neurological disorders, yet non-invasive and cost-effective assessment of in vivo neuroinflammatory processes in the central nervous system remains challenging. Diffusion weighted magnetic resonance spectroscopy (dMRS) has shown promise in addressing these challenges by measuring diffusivity properties of different neurometabolites, which can reflect cell-specific morphologies. Prior work has demonstrated dMRS utility in capturing microglial reactivity in the context of lipopolysaccharide (LPS) challenges and serious neurological disorders, detected as changes of microglial metabolite diffusivity properties. However, the extent to which such dMRS metrics are capable of detecting subtler and more nuanced levels of neuroinflammation in populations without overt neuropathology is unknown. Here we examined the relationship between intrinsic, gut-derived levels of systemic LPS and dMRS-based apparent diffusion coefficients (ADC) of choline, creatine, and N-acetylaspartate (NAA) in two brain regions: the thalamus and the corona radiata. Higher plasma LPS concentrations were significantly associated with increased ADC of choline and NAA in the thalamic region, with no such relationships observed in the corona radiata for any of the metabolites examined. As such, dMRS may have the sensitivity to measure microglial reactivity across populations with highly variable levels of neuroinflammation, and holds promising potential for widespread applications in both research and clinical settings.

2.
Mov Disord ; 39(8): 1258-1268, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38817039

ABSTRACT

Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebrovascular Circulation , Glymphatic System , Lewy Body Disease , Humans , Lewy Body Disease/physiopathology , Lewy Body Disease/metabolism , Glymphatic System/physiopathology , Cerebrovascular Circulation/physiology , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...