Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Pharm ; 82(2): 247-63, 2014.
Article in English | MEDLINE | ID: mdl-24959402

ABSTRACT

This study details the isolation, identification, and characterization of ambroxol's unknown impurity. One unknown impurity of ambroxol was formed in the formulated drug under stress conditions [40°C /75% relative humidity (RH) for 6 months] with the relative retention time (RRT) 0.68 in RP-HPLC. The impurity was enriched by exposing it to heat and it was isolated by using preparative HPLC. The enriched impurity was purified and characterized using the following sophisticated techniques: 2D NMR (gDQ-COSY, gHSQC, and gHMBC), FTIR, and LC-MS/MS. On the basis of the spectral data, the impurity was characterized as trans-4-(6,8-dibromoquinazolin-3(4H)-yl)cyclohexanol.

2.
Sci Pharm ; 82(2): 307-26, 2014.
Article in English | MEDLINE | ID: mdl-24959404

ABSTRACT

Statistical experimental design was used to optimize the chromatographic separations of two pharmaceutical compounds from their respective potential impurities. A fractional factorial design was utilized to study the effects of pH, organic solvent in mobile phases A&B, and flow rate on the resolution of Rabeprazole and Rabeprazole Sulfone, which had closely eluting peaks. A desirability function applied to the optimized conditions predicted the peak resolution between 2.2 and 2.7 for the Rabeprazole & Rabeprazole Sulfone impurity. The chromatographic method employed an Acquity UPLC, BEH C18 column (100 × 2.1 mm i.d., 1.7 µm particle size) with the mobile phase consisting of a phosphate buffer, pH 6.5, and acetonitrile in a gradient program. The flow rate and injection volumes were 0.45 mL/min & 5 µl, respectively, and detection was done at 254 nm. The chromatographic method was validated for linearity, accuracy, precision, specificity, and ruggedness according to ICH guidelines. The results clearly showed that the quality by design concept could be effectively applied to optimize a UPLC chromatographic method with fewer trials and error-free experimentation.

3.
Sci Pharm ; 82(1): 99-115, 2014.
Article in English | MEDLINE | ID: mdl-24634845

ABSTRACT

A sensitive, stability-indicating gradient RP-HPLC method with PDA detection has been developed for the simultaneous analysis of drotaverine impurities in active pharmaceutical ingredient (API) and pharmaceutical formulations. Efficient chromatographic separation was achieved on an XTerra RP18, 150 × 4.6 mm, 5 µm column using gradient elution at 230 nm detection wavelength. The optimized mobile phase consisted of a 0.02 M potassium dihydrogen orthophosphate buffer of pH 3.0 as solvent A and acetonitrile as solvent B. The flow rate of the mobile phase was 1.0 mL min(-1) with a column temperature of 25°C. The method showed linearity over the range of 0.251-10.033 µg/mL, 0.231-9.995 µg/mL, 0.230-10.089 µg/mL, 0.334-10.011 µg/mL, and 0.324-10.050 µg/mL for impurities 1, 2, 3, 4, and drotaverine, respectively, with a correlation coefficient greater than 0.999. The relative retention times and relative response factors of impurities 1, 2, 3, 4 were 0.36, 0.90, 1.42, 1.55 and 1.04, 0.84, 1.10, 1.30, respectively. The drotaverine formulation sample was subjected to the stress conditions of acid, base, oxidative, thermal, humidity, and photolytic degradation. Drotaverine was found to degrade significantly in peroxide, base, and heat stress conditions. The degradation products were well-resolved from drotaverine and its impurities. The peak purity test results confirmed that the drotaverine peak was homogenous and pure in all stress samples and the mass balance was found to be more than 98%, thus proving the stability-indicating power of the method. The developed method was validated according to ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.

4.
Sci Pharm ; 81(1): 123-38, 2013.
Article in English | MEDLINE | ID: mdl-23641333

ABSTRACT

A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 µg/mL with respect to the test concentration of 1000 µg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.

SELECTION OF CITATIONS
SEARCH DETAIL
...