Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37611581

ABSTRACT

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Subject(s)
Anti-Bacterial Agents , Bacteria , Soil Microbiology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Biological Assay , Diphosphates
2.
bioRxiv ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37292624

ABSTRACT

Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.

3.
J Org Chem ; 88(4): 2214-2220, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36655882

ABSTRACT

This paper describes the synthesis and stereochemical determination of Novo29 (clovibactin), a new peptide antibiotic that is related to teixobactin and is active against Gram-positive bacteria. Novo29 is an eight-residue depsipeptide that contains the noncanonical amino acid hydroxyasparagine of hitherto undetermined stereochemistry in a macrolactone ring. The amino acid building blocks Fmoc-(2R,3R)-hydroxyasparagine-OH and Fmoc-(2R,3S)-hydroxyasparagine-OH were synthesized from (R,R)- and (S,S)-diethyl tartrate. Novo29 and epi-Novo29 were then prepared by solid-phase peptide synthesis using these building blocks. Correlation with an authentic sample of Novo29 through 1H NMR spectroscopy, LC-MS, and in vitro antibiotic activity established that Novo29 contains (2R,3R)-hydroxyasparagine. X-ray crystallography reveals that epi-Novo29 adopts an amphiphilic conformation, with a hydrophobic surface and a hydrophilic surface. Four sets of epi-Novo29 molecules pack in the crystal lattice to form a hydrophobic core. The macrolactone ring adopts a conformation in which the main-chain amide NH groups converge to create a cavity, which binds ordered water and acetate anion. The amphiphilic conformation of epi-Novo29 is reminiscent of the amphiphilic conformation adopted by the related antibiotic teixobactin and its derivatives, which contains a hydrophobic surface that interacts with the lipids of the bacterial cell membrane and a hydrophilic surface that interacts with the aqueous environment. Molecular modeling suggests that Novo29 can adopt an amphiphilic conformation similar to teixobactin, suggesting that Novo29 may interact with bacteria in a similar fashion to teixobactin.


Subject(s)
Amino Acids , Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Models, Molecular , Molecular Conformation , Amino Acids/chemistry , Magnetic Resonance Spectroscopy
4.
Angew Chem Int Ed Engl ; 60(24): 13579-13586, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33768646

ABSTRACT

Hypeptin is a cyclodepsipeptide antibiotic produced by Lysobacter sp. K5869, isolated from an environmental sample by the iChip technology, dedicated to the cultivation of previously uncultured microorganisms. Hypeptin shares structural features with teixobactin and exhibits potent activity against a broad spectrum of gram-positive pathogens. Using comprehensive in vivo and in vitro analyses, we show that hypeptin blocks bacterial cell wall biosynthesis by binding to multiple undecaprenyl pyrophosphate-containing biosynthesis intermediates, forming a stoichiometric 2:1 complex. Resistance to hypeptin did not readily develop in vitro. Analysis of the hypeptin biosynthetic gene cluster (BGC) supported a model for the synthesis of the octapeptide. Within the BGC, two hydroxylases were identified and characterized, responsible for the stereoselective ß-hydroxylation of four building blocks when bound to peptidyl carrier proteins. In vitro hydroxylation assays corroborate the biosynthetic hypothesis and lead to the proposal of a refined structure for hypeptin.


Subject(s)
Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/pharmacology , Cell Wall/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lysobacter/genetics , Microbial Sensitivity Tests , Mixed Function Oxygenases/genetics , Multigene Family , Peptide Synthases/genetics
5.
mBio ; 11(4)2020 08 04.
Article in English | MEDLINE | ID: mdl-32753498

ABSTRACT

Mycobacterium tuberculosis, which causes tuberculosis (TB), is estimated to infect one-third of the world's population. The overall burden and the emergence of drug-resistant strains of Mycobacterium tuberculosis underscore the need for new therapeutic options against this important human pathogen. Our recent work demonstrated the success of natural product discovery in identifying novel compounds with efficacy against Mycobacterium tuberculosis Here, we improve on these methods by combining improved isolation and Mycobacterium tuberculosis selective screening to identify three new anti-TB compounds: streptomycobactin, kitamycobactin, and amycobactin. We were unable to obtain mutants resistant to streptomycobactin, and its target remains to be elucidated. We identify the target of kitamycobactin to be the mycobacterial ClpP1P2C1 protease and confirm that kitamycobactin is an analog of the previously identified compound lassomycin. Further, we identify the target of amycobactin to be the essential protein secretion pore SecY. We show further that amycobactin inhibits protein secretion via the SecY translocon. Importantly, this inhibition is bactericidal to nonreplicating Mycobacterium tuberculosis This is the first compound, to our knowledge, that targets the Sec protein secretion machinery in Mycobacterium tuberculosis This work underscores the ability of natural product discovery to deliver not only new compounds with activity against Mycobacterium tuberculosis but also compounds with novel targets.IMPORTANCE Decreasing discovery rates and increasing resistance have underscored the need for novel therapeutic options to treat Mycobacterium tuberculosis infection. Here, we screen extracts from previously uncultured soil microbes for specific activity against Mycobacterium tuberculosis, identifying three novel compounds. We further define the mechanism of action of one compound, amycobactin, and demonstrate that it inhibits protein secretion through the Sec translocation machinery.


Subject(s)
Antitubercular Agents/pharmacology , Drug Discovery , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/isolation & purification , Humans , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Protease Inhibitors/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology
7.
Nature ; 517(7535): 455-9, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25561178

ABSTRACT

Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Depsipeptides/pharmacology , Drug Resistance, Microbial , Microbial Viability/drug effects , Mycobacterium tuberculosis/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Betaproteobacteria/chemistry , Betaproteobacteria/genetics , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Cell Wall/chemistry , Cell Wall/drug effects , Cell Wall/metabolism , Depsipeptides/biosynthesis , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Disease Models, Animal , Drug Resistance, Microbial/genetics , Female , Mice , Microbial Sensitivity Tests , Molecular Sequence Data , Multigene Family/genetics , Mycobacterium tuberculosis/cytology , Mycobacterium tuberculosis/genetics , Peptidoglycan/biosynthesis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Staphylococcus aureus/cytology , Staphylococcus aureus/genetics , Teichoic Acids/biosynthesis , Time Factors
8.
Astrobiology ; 12(7): 685-98, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22882001

ABSTRACT

Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25 mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ(13)C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO(3) matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Fresh Water/microbiology , Genomics/methods , Isotope Labeling/methods , Lipids/analysis , Base Sequence , Biomarkers/metabolism , Carbon Isotopes , Carbonates/metabolism , DNA, Ribosomal/genetics , Mexico , Models, Biological , Molecular Sequence Data , Phylogeny
9.
Environ Microbiol ; 11(1): 16-34, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18764874

ABSTRACT

Ancient biologically mediated sedimentary carbonate deposits, including stromatolites and other microbialites, provide insight into environmental conditions on early Earth. The primary limitation to interpreting these records is our lack of understanding regarding microbial processes and the preservation of geochemical signatures in contemporary microbialite systems. Using a combination of metagenomic sequencing and isotopic analyses, this study describes the identity, metabolic potential and chemical processes of microbial communities from living microbialites from Cuatro Ciénegas, Mexico. Metagenomic sequencing revealed a diverse, redox-dependent microbial community associated with the microbialites. The microbialite community is distinct from other marine and freshwater microbial communities, and demonstrates extensive environmental adaptation. The microbialite metagenomes contain a large number of genes involved in the production of exopolymeric substances and the formation of biofilms, creating a complex, spatially structured environment. In addition to the spatial complexity of the biofilm, microbial activity is tightly controlled by sensory and regulatory systems, which allow for coordination of autotrophic and heterotrophic processes. Isotopic measurements of the intracrystalline organic matter demonstrate the importance of heterotrophic respiration of photoautotrophic biomass in the precipitation of calcium carbonate. The genomic and stable isotopic data presented here significantly enhance our evolving knowledge of contemporary biomineralization processes, and are directly applicable to studies of ancient microbialites.


Subject(s)
Biodiversity , Fresh Water/chemistry , Fresh Water/microbiology , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Isotope Labeling , Carbonates/metabolism , Mexico , Polymers/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...