Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Antibiot (Tokyo) ; 77(1): 57-65, 2024 01.
Article in English | MEDLINE | ID: mdl-37872357

ABSTRACT

For a number of years, antimicrobial resistance (AMR) has been a critical issue for humanity. Drug discovery efforts have been very limited and the spread of bacterial pathogens has over-run our traditional arsenal of antibiotics. Bacteria can involve to evade compounds that can halt their rapid growth. The authors have discovered a potent macrocycle derivative that when dosed concomitantly with the standard of care (SOC) antibiotic vancomycin, can clear methicillin resistant Staphylococcus aureus (MRSA) infections. In addition, we have probed the lead compounds in Salmonella typhimurium bacterial strains. In vitro, in vivo, and ADME data have been included to stress the virtues of this new antibiotic.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Vancomycin/pharmacology , Rifampin , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
2.
Mol Cancer Ther ; 20(10): 1966-1976, 2021 10.
Article in English | MEDLINE | ID: mdl-34315762

ABSTRACT

Lung cancers harboring mesenchymal-to-epithelial transition factor (MET) genetic alterations, such as exon 14 skipping mutations or high-level gene amplification, respond well to MET-selective tyrosine kinase inhibitors (TKI). However, these agents benefit a relatively small group of patients (4%-5% of lung cancers), and acquired resistance limits response durability. An antibody-drug conjugate (ADC) targeting MET might enable effective treatment of MET-overexpressing tumors (approximately 25% of lung cancers) that do not respond to MET targeted therapies. Using a protease-cleavable linker, we conjugated a biparatopic METxMET antibody to a maytansinoid payload to generate a MET ADC (METxMET-M114). METxMET-M114 promotes substantial and durable tumor regression in xenografts with moderate to high MET expression, including models that exhibit innate or acquired resistance to MET blockers. Positron emission tomography (PET) studies show that tumor uptake of radiolabeled METxMET antibody correlates with MET expression levels and METxMET-M114 efficacy. In a cynomolgus monkey toxicology study, METxMET-M114 was well tolerated at a dose that provides circulating drug concentrations that are sufficient for maximal antitumor activity in mouse models. Our findings suggest that METxMET-M114, which takes advantage of the unique trafficking properties of our METxMET antibody, is a promising candidate for the treatment of MET-overexpressing tumors, with the potential to address some of the limitations faced by the MET function blockers currently in clinical use.


Subject(s)
Antibodies, Monoclonal/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Humans , Immunoconjugates/pharmacokinetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macaca fascicularis , Male , Mice , Mice, SCID , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem ; 28(23): 115785, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33099182

ABSTRACT

ADCs based on the natural product maytansine have been successfully employed clinically. In a previous report, ADCs based on hydrophilic non-cell permeable maytansinoids was presented. The authors in this report further explore the maytansine scaffold to develop tubulin inhibitors capable of cell permeation. The research resulted in amino-benzoyl-maytansinoid payloads that were further elaborated with linkers for conjugating to antibodies. This approach was applied to MUC16 tumor targeting antibodies for ovarian cancers. A positive control ADC was evaluated alongside the amino-benzoyl-maytansinoid ADC and the efficacy observed was equivalent while the isotype control ADCs had no effect.


Subject(s)
Immunoconjugates/metabolism , Maytansine/chemistry , Tubulin Modulators/chemistry , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Maytansine/metabolism , Mice, SCID , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Transplantation, Heterologous , Tubulin Modulators/metabolism
4.
Bioorg Med Chem ; 26(9): 2271-2279, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29605304

ABSTRACT

Natural products have been used for many medicinal purposes for centuries. Antibody drug conjugates (ADCs) have utilized this rich source of small molecule therapeutics to produce several clinically useful treatments. ADCs based on the natural product maytansine have been successful clinically. The authors further the utility of the anti-cancer natural product maytansine by developing efficacious payloads and linker-payloads for conjugating to antibodies. The success of our approach was realized in the EGFRvIII targeting ADC EGFRvIII-16. The ADC was able to regress tumors in 2 tumor models (U251/EGFRvIII and MMT/EGFRvIII). When compared to a positive control ADC, the efficacy observed was similar or improved while the isotype control ADCs had no effect.


Subject(s)
Antineoplastic Agents/pharmacology , Immunotoxins/pharmacology , Maytansine/pharmacology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , CHO Cells , Cell Line, Tumor , Cricetulus , ErbB Receptors/immunology , Female , Humans , Hydrophobic and Hydrophilic Interactions , Immunotoxins/chemistry , Immunotoxins/immunology , Kinetics , Male , Maytansine/chemical synthesis , Maytansine/chemistry , Mice , Xenograft Model Antitumor Assays
5.
Mol Cancer Ther ; 16(7): 1299-1311, 2017 07.
Article in English | MEDLINE | ID: mdl-28377489

ABSTRACT

The Prolactin Receptor (PRLR) is a type 1 cytokine receptor that is expressed in a subset of breast cancers and may contribute to its pathogenesis. It is relatively overexpressed in approximately 25% of human breast tumors while expressed at low levels in some normal human tissues including the mammary gland. We developed an anti-PRLR antibody-drug conjugate (ADC), to target PRLR-positive breast cancer. REGN2878-DM1 is comprised of a fully human high-affinity function-blocking anti-PRLR IgG1 antibody (REGN2878) conjugated via a noncleavable SMCC linker to the cytotoxic maytansine derivative DM1. Both unconjugated REGN2878 and conjugated REGN2878-DM1 block PRL-mediated activation in vitro and are rapidly internalized into lysosomes. REGN2878-DM1 induces potent cell-cycle arrest and cytotoxicity in PRLR-expressing tumor cell lines. In vivo, REGN2878-DM1 demonstrated significant antigen-specific antitumor activity against breast cancer xenograft models. In addition, REGN2878-DM1 showed additive activity when combined with the antiestrogen agent fulvestrant. These results illustrate promising antitumor activity against PRLR-positive breast cancer xenografts and support the evaluation of anti-PRLR ADCs as potential therapeutic agents in breast cancer. Mol Cancer Ther; 16(7); 1299-311. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Breast Neoplasms/drug therapy , Immunoconjugates/administration & dosage , Receptors, Prolactin/immunology , Animals , Antibodies, Anti-Idiotypic/administration & dosage , Antibodies, Anti-Idiotypic/immunology , Antibodies, Monoclonal, Humanized/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Humans , Immunoconjugates/immunology , Mice , Receptors, Prolactin/genetics , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 16(4): 681-693, 2017 04.
Article in English | MEDLINE | ID: mdl-28108597

ABSTRACT

The properties of cell surface proteins targeted by antibody-drug conjugates (ADCs) have not been fully exploited; of particular importance are the rate of internalization and the route of intracellular trafficking. In this study, we compared the trafficking of HER2, which is the target of the clinically approved ADC ado-trastuzumab emtansine (T-DM1), with that of prolactin receptor (PRLR), another potential target in breast cancer. In contrast to HER2, we found that PRLR is rapidly and constitutively internalized, and traffics efficiently to lysosomes, where it is degraded. The PRLR cytoplasmic domain is necessary to promote rapid internalization and degradation, and when transferred to HER2, enhances HER2 degradation. In accordance with these findings, low levels of cell surface PRLR (∼30,000 surface receptors per cell) are sufficient to mediate effective killing by PRLR ADC, whereas cell killing by HER2 ADC requires higher levels of cell surface HER2 (∼106 surface receptors per cell). Noncovalently cross-linking HER2 to PRLR at the cell surface, using a bispecific antibody that binds to both receptors, dramatically enhances the degradation of HER2 as well as the cell killing activity of a noncompeting HER2 ADC. Furthermore, in breast cancer cells that coexpress HER2 and PRLR, a HER2xPRLR bispecific ADC kills more effectively than HER2 ADC. These results emphasize that intracellular trafficking of ADC targets is a key property for their activity and, further, that coupling an ADC target to a rapidly internalizing protein may be a useful approach to enhance internalization and cell killing activity of ADCs. Mol Cancer Ther; 16(4); 681-93. ©2017 AACR.


Subject(s)
Antibodies, Bispecific/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/metabolism , Immunoconjugates/pharmacology , Maytansine/analogs & derivatives , Receptor, ErbB-2/antagonists & inhibitors , Receptors, Prolactin/antagonists & inhibitors , Ado-Trastuzumab Emtansine , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Female , Humans , Maytansine/pharmacology , Protein Transport/drug effects , Receptor, ErbB-2/metabolism , Receptors, Prolactin/metabolism , Trastuzumab
7.
Bioorg Med Chem Lett ; 21(15): 4602-7, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21715165

ABSTRACT

An extension of our previously reported series of macrocyclic ortho-aminobenzamide Hsp90 inhibitors is reported. Addition of a second methyl group to the tether provided analogs that show increased potency in binding as well as cell-proliferation assays and, more importantly, are stable toward microsomes. We wish to disclose the discovery of a macrocycle which showed impressive biomarker activity 24-h post dosing and which demonstrated prolonged exposure in tumors. When studied in a lung cancer xenograft model, the compound demonstrated significant tumor size reduction.


Subject(s)
Antineoplastic Agents/chemistry , Benzamides/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lung Neoplasms/drug therapy , Macrocyclic Compounds/chemistry , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Benzamides/pharmacokinetics , Benzamides/therapeutic use , Binding Sites , Biomarkers/metabolism , Drug Evaluation, Preclinical , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Nude , Microsomes, Liver/metabolism , Protein Structure, Tertiary , Rats , Transplantation, Heterologous
8.
Bioorg Med Chem Lett ; 21(11): 3411-6, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21515049

ABSTRACT

A novel series of macrocyclic ortho-aminobenzamide Hsp90 inhibitors is reported. In continuation of our research in this area, macrocyclic amides and lactams were explored to reduce the risk of hERG liabilities. This effort culminated in the discovery of compound 38, which showed a favorable in vitro profile, and efficiently suppressed proliferation of several relevant cell lines. This compound showed prolonged Hsp90-inhibitory activity at least 24 h post-administration, consistent with elevated and prolonged exposure in the tumor.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers/metabolism , Drug Design , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/chemical synthesis , Lactams, Macrocyclic/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Inhibitory Concentration 50 , Lactams, Macrocyclic/chemistry , Models, Molecular , Molecular Structure , ortho-Aminobenzoates/chemical synthesis , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology
9.
Bioorg Med Chem Lett ; 21(8): 2278-82, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21420297

ABSTRACT

A novel series of macrocyclic ortho-aminobenzamide Hsp90 inhibitors is reported. A basic nitrogen within the tether linking the aniline nitrogen atom to a tetrahydroindolone moiety allowed access to compounds with good physical properties. Important structure-activity relationship information was obtained from this series which led to the discovery of a soluble and stable compound which is potent in an Hsp90 binding and cell-proliferation assay.


Subject(s)
Antineoplastic Agents/chemistry , Benzamides/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzamides/chemical synthesis , Benzamides/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation , Computer Simulation , Crystallography, X-Ray , Drug Design , HSP90 Heat-Shock Proteins/metabolism , Humans , Protein Binding , Structure-Activity Relationship
10.
Eur J Med Chem ; 45(4): 1379-86, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20074837

ABSTRACT

A series of 8,9-dimethoxy-5-(2-aminoalkoxy-pyridin-3-yl)-benzo[c][2,7]naphthyridin-4-ylamine-based inhibitors of 3-phosphoinositide-dependent kinase-1 (PDK-1) has been identified. Several examples appear to be potent and relatively selective inhibitors of PDK-1 over the related AGC kinases PKA, PKB/AKT, and p70S6K. The introduction of a stereochemical center beside the amino substituent on the aminoalkoxy-side chain had little effect upon the inhibitory activity against these enzymes, and X-ray crystallographic analyses of a representative pair of enantiomeric inhibitors bound to the active site of PDK-1 revealed comparable binding modes for each enantiomer.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/pharmacology , 3-Phosphoinositide-Dependent Protein Kinases , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Static Electricity , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 19(9): 2461-3, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19345579

ABSTRACT

A series of 4-indolylamino-5-phenyl-3-pyridinecarbonitrile inhibitors of PKCtheta were synthesized as potential anti-inflammatory agents. The effects of specific substitution on the 5-phenyl moiety and variations of the positional isomers of the 4-indolylamino substituent were explored. This study led to the discovery of compound 12d, which had an IC(50) value of 18nM for the inhibition of PKCtheta.


Subject(s)
Isoenzymes/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Chemistry, Pharmaceutical/methods , Drug Design , Humans , Inhibitory Concentration 50 , Isoenzymes/chemistry , Mice , Models, Chemical , Molecular Structure , Protein Isoforms , Protein Kinase C/chemistry , Protein Kinase C-theta , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship
12.
Bioorg Med Chem ; 15(11): 3635-48, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17416531

ABSTRACT

A series of 4-dimethylamino-but-2-enoic acid [4-(3,6-dioxo-cyclohexa-1,4-dienylamino)-7-ethoxy-quinazolin-6-yl]-amide derivatives were prepared. These compounds have two independent reactive centers and were designed to function as dual irreversible inhibitors of the kinase domains of both Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) where each reactive center targets a different, non-conserved, cysteine residue located in the ATP binding pocket of these enzymes. The compounds contain a 6-(4-(dimethylamino) crotonamide) Michael acceptor group that targets Cys-773 in EGFR and a 4-(amino-[1,4]benzoquinone) moiety that targets Cys-1045 in VEGFR-2. In vitro studies indicated that most of these compounds are relatively potent inhibitors of each enzyme. These inhibitors were compared with reference compounds that lack one or both of the reactive centers. The relative dependence of the IC(50) values on the concentration of ATP used in the assays suggests that these compounds appear to function as irreversible inhibitors of each kinase.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Binding Sites , Biological Assay , Cells, Cultured , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Protein Conformation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Quinazolines/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
13.
J Med Chem ; 50(9): 2108-16, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17402724

ABSTRACT

A series of potent anthranilic acid-based inhibitors of the hepatitis C NS5B polymerase has been identified. The inhibitors bind to a site on NS5B between the thumb and palm regions adjacent to the active site as determined by X-ray crystallography of the enzyme-inhibitor complex. Guided by both molecular modeling and traditional SAR, the enzyme activity of the initial hit was improved by approximately 100-fold, yielding a series of potent and selective NS5B inhibitors with IC50 values as low as 10 nM. These compounds were also inhibitors of the HCV replicon in cultured HUH7 cells.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , ortho-Aminobenzoates/chemical synthesis , Allosteric Regulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Cell Line , Crystallography, X-Ray , Hepacivirus/enzymology , Hepacivirus/genetics , Humans , Models, Molecular , Replicon , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology
14.
J Med Chem ; 48(24): 7560-81, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16302797

ABSTRACT

A series of 2-(quinazolin-4-ylamino)-[1,4] benzoquinone derivatives that function as potent covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2 (VEGFR-2) has been prepared by ceric ammonium nitrate oxidation of substituted (2,5-dimethoxyphenyl)(6,7-disubstituted-quinazolin-4-yl)amines and by displacement of the chlorine atom of substituted 2-chloro-5-(6,7-disubstituted-quinazolin-4-ylamino)-[1,4]benzoquinones with various amines, anilines, phenols, and alcohols. Enzyme studies were conducted in the absence and presence of glutathione and plasma. Several of the compounds inhibit VEGF-stimulated autophosphorylation in intact cells. Kinetic experiments were performed to study the reactivity of selected inhibitors toward glutathione. Reactivities correlated with LUMO energies calculated as averages of those of individual conformers weighted by the Boltzmann distribution. These results and molecular modeling were used to rationalize the biological observations. The compounds behave as non-ATP-competitive inhibitors. Unequivocal evidence, from mass spectral studies, indicates that these inhibitors form a covalent interaction with Cys-1045. One member of this series displays antitumor activity in an in vivo model.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Benzoquinones/chemical synthesis , Quinazolines/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Benzoquinones/chemistry , Benzoquinones/pharmacology , Binding Sites , Cell Line , Female , Glutathione/chemistry , Humans , Kinetics , Mice , Mice, Nude , Models, Molecular , Molecular Conformation , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Quantum Theory , Quinazolines/chemistry , Quinazolines/pharmacology , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
15.
J Am Chem Soc ; 124(25): 7363-75, 2002 Jun 26.
Article in English | MEDLINE | ID: mdl-12071745

ABSTRACT

Silanols are best known as unstable precursors of siloxane (silicone) polymers, substances generally considered stable and inert, but have the potential to mimic a hydrated carbonyl and inhibit protease enzymes. While previous testing of simple silanediol and silanetriol species as inhibitors of hydrolase enzymes found them ineffective, this study reports polypeptide mimics with a central methylsilanol [SiMeOH] or silanediol [Si(OH)(2)] group and their assessment as effective transition state analogue inhibitors of the well-studied metalloprotease angiotensin-converting enzyme (ACE). Central to the synthesis strategy, phenylsilanes were employed as acid-hydrolyzable precursors of the silanol group. The N-benzoyl Leu-[SiMeOH]-Gly benzyl amides proved to be stable and readily characterized. In contrast, the Leu-[Si(OH)(2)]-Gly structure was difficult to characterize, possibly because of self-association. Capping the silanediol with chlorotrimethylsilane gave a well-defined trisiloxane, demonstrating that the silanediol was monomeric. The Leu-[Si]-Gly structures were converted to Leu-[Si]-Ala analogues by enolate alkylation. Coupling of the silanol precursors with proline tert-butyl ester gave N-benzoyl Leu-[Si]-Gly-Pro and N-benzoyl Leu-[Si]-Ala-Pro tripeptide analogues. Treatment of these with triflic acid formed the corresponding methylsilanols and silanediols, all of which were monomeric. The silanediol tripeptide mimics inhibited ACE with IC(50) values as low as 14 nM. Methylsilanols, in contrast, were poor inhibitors, with IC(50) values above 3000 nM. These data, including comparisons with inhibition data from carbon analogues, are consistent with binding of the silanediols by chelation of the ACE active site zinc, whereas the methylsilanols ligate poorly.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Oligopeptides/chemistry , Silanes/chemical synthesis , Silanes/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Dipeptides/chemistry , Dipeptides/pharmacology , Models, Molecular , Molecular Mimicry , Oligopeptides/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Silanes/chemistry
16.
Angew Chem Int Ed Engl ; 37(6): 812-814, 1998 Apr 03.
Article in English | MEDLINE | ID: mdl-29711373

ABSTRACT

Transition state analogues of the peptide hydrolysis intermediate can take the form of complex silanediols such as 1, which inhibits angiotensin-converting enzyme (ACE) at nanomolar concentrations. In contrast, earlier investigation of enzyme inhibition with simple silanediols and silanetriols showed them to be inactive.

SELECTION OF CITATIONS
SEARCH DETAIL
...