Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 23(7): 1749-61, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22552826

ABSTRACT

Polycaprolactone (PCL) is a widely accepted synthetic biodegradable polymer for tissue engineering, however its use in hard tissue engineering is limited because of its inadequate mechanical strength and low bioactivity. In this study, we used halloysite nanoclay (NC) as an inorganic filler material to prepare PCL/NC fibrous scaffolds via electrospinning technique after intercalating NC within PCL by solution intercalation method. The obtained nanofibrous mat was found to be mechanically superior to PCL fibrous scaffolds. These scaffolds allowed greater protein adsorption and enhanced mineralization when incubated in simulated body fluid. Moreover, our results indicated that human mesenchymal stem cells (hMSCs) seeded on these scaffolds were viable and could proliferate faster than in PCL scaffolds as confirmed by fluorescence and scanning electron microscopic observations. Further, osteogenic differentiation of hMSCs on nanoclay embedded scaffolds was demonstrated by an increase in alkaline phosphatase activity when compared to PCL scaffold without nanoclay. All of these results suggest the potential of PCL/NC scaffolds for bone tissue engineering.


Subject(s)
Aluminum Silicates , Bone and Bones , Tissue Engineering , Adsorption , Bone and Bones/cytology , Cell Adhesion , Cell Differentiation , Clay , Humans , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...