Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202406441, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742483

ABSTRACT

Transition-metal carbides with metallic properties have been extensively used as electrocatalysts due to their excellent conductivity and unique electronic structures. Herein, NbC nanoparticles decorated carbon nanofibers (NbC@CNFs) are proposed as an efficient and robust catalyst for electrochemical synthesis of ammonia from nitrate/nitrite reduction, which achieves a high Faradaic efficiency (FE) of 94.4 % and a large ammonia yield of 30.9 mg h-1 mg-1 cat.. In situ electrochemical tests reveal the nitrite reduction at the catalyst surface follows the *NO pathway and theoretical calculations reveal the formation of NbC@CNFs heterostructure significantly broadens density of states nearby the Fermi energy. Finite element simulations unveil that the current and electric field converge on the NbC nanoparticles along the fiber, suggesting the dispersed carbides are highly active for nitrite reduction.

2.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38197767

ABSTRACT

The Thomson parabola ion spectrometer is vulnerable to intense electromagnetic pulses (EMPs) generated by a high-power laser interacting with solid targets. A metal shielding cage with a circular aperture of 1 mm diameter is designed to mitigate EMPs induced by a picosecond laser irradiating a copper target in an experiment where additionally an 8-ns delayed nanosecond laser is incident into an aluminum target at the XG-III laser facility. The implementation of the shielding cage reduces the maximum EMP amplitude inside the cage to 5.2 kV/m, and the simulation results indicate that the cage effectively shields electromagnetic waves. However, the laser-accelerated relativistic electrons which escaped the target potential accumulate charge on the surface of the cage, which is responsible for the detected EMPs within the cage. To further alleviate EMPs, a lead wall and an absorbing material (ECCOSORB AN-94) were added before the cage, significantly blocking the propagation of electrons. These findings provide valuable insights into EMP generation in large-scale laser infrastructures and serve as a foundation for electromagnetic shielding design.

SELECTION OF CITATIONS
SEARCH DETAIL
...