Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Environ Res ; 252(Pt 3): 118986, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38663671

ABSTRACT

The sequencing electroreduction-electrooxidation process has emerged as a promising approach for the degradation of the chloronitrobenzenes (CNBs) due to its elimination of electro-withdrawing groups in the reduction process, facilitating further removal in the subsequent oxidation process. Herein, we developed a cathode consisting of atom Pd on a Ti plate, which enabled the electro-generation of atomic hydrogen (H*) and the efficient electrocatalytic activation of H2O2 to hydroxyl radical (•OH). Cyclic voltammetry (CV) curves and electron spin resonance (ESR) spectra verified the existence of H* and •OH. The electroreduction-electrooxidation system achieved 94.7% of 20 mg L-1 2,4-DCNB removal with a relatively low H2O2 addition (5 mM). Moreover, the inhibition rate of Photobacterium phosphoreum in the effluent decreased from 95% to 52% after the sequencing electroreduction-electrooxidation processes. It was further revealed that the H* dominated the electroreduction process and triggered the electrooxidation process. Our work sheds light on the effective removal of electron-withdrawing groups substituted aromatic contaminants from water and wastewater.


Subject(s)
Hydrogen , Nitrobenzenes , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Nitrobenzenes/chemistry , Hydrogen/chemistry , Electrochemical Techniques/methods , Waste Disposal, Fluid/methods
2.
Water Res ; 216: 118299, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35325824

ABSTRACT

Membrane fouling is one of major obstacles in the application of membrane technologies. Accurately predicting or simulating membrane fouling behaviours is of great significance to elucidate the fouling mechanisms and develop effective measures to control fouling. Although mechanistic/mathematical models have been widely used for predicting membrane fouling, they still suffer from low accuracy and poor sensitivity. To overcome the limitations of conventional mathematical models, artificial intelligence (AI)-based techniques have been proposed as powerful approaches to predict membrane filtration performance and fouling behaviour. This work aims to present a state-of-the-art review on the advances in AI algorithms (e.g., artificial neural networks, fuzzy logic, genetic programming, support vector machines and search algorithms) for prediction of membrane fouling. The working principles of different AI techniques and their applications for prediction of membrane fouling in different membrane-based processes are discussed in detail. Furthermore, comparisons of the inputs, outputs, and accuracy of different AI approaches for membrane fouling prediction have been conducted based on the literature database. Future research efforts are further highlighted for AI-based techniques aiming for a more accurate prediction of membrane fouling and the optimization of the operation in membrane-based processes.


Subject(s)
Artificial Intelligence , Membranes, Artificial , Algorithms , Fuzzy Logic , Neural Networks, Computer
3.
J Environ Manage ; 298: 113429, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34358941

ABSTRACT

Sludge management represents a critical challenge because of complex compositions and poor dewaterability. Fe2+-activated persulfate oxidation (Fe2+/S2O82-) is an effective, and widely investigated method for enhancing sludge dewatering. However, the potential effects of Fe2+/S2O82- on sludge drying efficiency, anaerobic biodegradation behaviors and potential recycling of sludge residua are not yet well-known. In this study, a new sludge disposal route (step i: enhanced dewatering via Fe2+/S2O82-, and step ii: drying-incineration or anaerobic digestion) was proposed and appraised comprehensively. Results showed that Fe2+/S2O82- oxidation destroyed extracellular polymeric substances, lysed sludge cells and enhanced the dewaterability greatly. Capillary suction time and mechanical filtration time at 2.0/1.6 mmol-Fe2+/S2O82-/g-VS decreased by 88.0% and 79.6%, respectively. Moreover, 89.8% of micro-pollutants (e.g., methylbenzene, ethylbenzene, p-m-xylene and o-xylene) in sludge were removed. Besides, the pretreatment was able to alter sludge drying behaviors and methane-producing potential. Pretreated sludge exhibited faster drying rate and shorter lag-time for methane production. Incineration residua of dewatered sludge could be re-coupled with S2O82- as the conditioner to enhance sludge dewaterability, thereby reducing the chemical input and disposal cost. This study provides a novel, self-sustainable strategy for sludge management, reutilization and final safe disposal.


Subject(s)
Sewage , Waste Disposal, Fluid , Methane , Oxidation-Reduction , Water
4.
Bioresour Technol ; 339: 125547, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34315087

ABSTRACT

The potential of disordered mesoporous carbon (DMC) as catalyst of peroxydisulfate (PDS) to improve sludge solubilization and methane production was investigated. Results showed that DMC activated PDS (DMC/PDS) to produce sulfate radicals (SO4-), facilitating cells rupture and sludge matrix dissociation by degrading the carbonyl and amide groups in organic biopolymers (especially proteins, polysaccharides and humus). At the optimal DMC/PDS dosage of 0.04/1.2 g-mmol/g-VS, SCOD was increased from initial 294.0 to 681.5 mg/L, with the methane production rate of 12.6 mL/g-VS/day. Moreover, DMC could serve as electron mediator to accelerate electron transfer of microorganisms, building a more robust anaerobic metabolic environment. Modelling analysis further demonstrated the crucial role of DMC/PDS pretreatment in biological degradation and methane productivity. This study indicated that DMC/PDS pretreatment can prominently enhance the release of soluble substances and methane production, aiding the utilization of PDS oxidation technology for improving anaerobic bioconversion of sludge.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Anaerobiosis , Biopolymers , Carbon , Methane , Waste Disposal, Fluid
5.
Sci Total Environ ; 789: 147859, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34052496

ABSTRACT

Microbial electrolytic cell (MEC) and magnetite (M) have shown excellent performance in promoting anaerobic digestion (AD) of biowastes. In this study, four types of anaerobic systems (i.e. single AD, M-AD, MEC-AD, and M-MEC-AD) were developed to comprehensively investigate the potential effects of magnetite-enhanced bioelectrochemical stimulation on the biodegradation of waste activated sludge (WAS) and methane (CH4) production. Results showed that M-MEC-AD system produced the highest cumulative CH4 yield, 9.4% higher than that observed in MEC-AD system. Bioelectrochemical stimulation enriched electroactive Geobacter, and classical methanogens (Methanosaeta and Methanobacterium), and the proliferation was further promoted when coupling with magnetite. The relative abundance of Geobacter (6.9%), Methanosaeta (0.3%), and Methanobacterium (12.6%) in M-MEC-AD system was about 10.8, 1.2, and 1.2 times of MEC-AD system, respectively. The integration of magnetite could serve as the conductive materials, and promote inherent indirect electron transfer (IET) and emerging direct electron transfer (DET) between methanogens and fermentative bacteria, building a more energy-efficient route for interspecies electron transfer and methane productivity. This study demonstrated the positive promotion of the coupled bioelectrochemical regulation and magnetite on organic biodegradation, process stability and CH4 productivity, providing some references for the integrated technology in sludge treatment and bioenergy recovery.


Subject(s)
Ferrosoferric Oxide , Sewage , Anaerobiosis , Bioreactors , Methane
6.
Huan Jing Ke Xue ; 41(11): 5073-5081, 2020 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-33124250

ABSTRACT

Membrane fouling is the biggest challenge of membrane bioreactor industrialization. In this study, a bio-electrochemical system (BES)-anaerobic membrane bioreactor (AnMBR) system was constructed, and the effect of nano-zero-valent iron (nZVI) on membrane anti-fouling ability and methane production was investigated. The results showed that the BES-AnMBR system was stable and the chemical oxygen demand (COD) removal rate was maintained at approximately 95%. The optimum condition was observed to be nZVI 0.1 g·g-1(VS). Under this condition, transmembrane pressure (TMP) was reduced by 28.1%, the membrane flux had a slight improvement, and methane production was up to 81.3 mL·g-1(CODremoved). This was 12.1% higher than that of the control. In addition, a further analysis of extracellular polymeric substances (EPS) fraction and membrane resistance showed that nZVI enhanced EPS decomposition, promoted the formation of an iron-rich layer of inorganic and organic matters on the membrane surface, and changed the distribution of organics and inorganics, thereby significantly alleviating membrane fouling. This study will enrich basic theory of conventional AnMBR and provide a new solution for efficient sludge treatment and resource utilization.


Subject(s)
Iron , Methane , Anaerobiosis , Bioreactors , Membranes, Artificial , Sewage , Waste Disposal, Fluid , Wastewater
7.
Huan Jing Ke Xue ; 41(8): 3740-3747, 2020 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-33124349

ABSTRACT

A laboratory-scale anaerobic membrane bioreactor (AnMBR) was used for the co-digestion of sewage sludge and food waste to investigate its organic matter removal characteristics, biogas production performance, and microbial community composition. The results showed that the degradation rate of volatile solids (VS) increased from 17.5% for a single digestion to 40% for the total digestion, and that the COD removal was 95.3% when the organic loading rate (OLR) was stabilized at 0.59-0.64 kg·(m3·d)-1. The solids content of the digested sludge increased by a factor of 3.9. The final CH4 content was 60% and the CH4 yield was 78.7 mL·g-1 of CODadded. The transmembrane pressure (TMP) and average flux were maintained at between -3.1 and -2.7 kPa and 0.106 L·(m2·h)-1, respectively, and membrane fouling was not serious. According to an analysis of the microbial diversity using 16S rRNA, the anaerobic bacterium in the AnMBR were mainly phylum Proteobacteria, Bacteroidetes, and Cloacimonetes, and the dominant methanogens included the Methanobacterium family, Methanosaeta genus, and Methanolinea genus. This study provides a strong theoretical basis for research into the stability and performance of AnMBRs for the co-treatment of sludge and other high-solid waste streams, and provided an effective solution for biomass resource utilization and the energy crisis.


Subject(s)
Refuse Disposal , Sewage , Anaerobiosis , Base Composition , Bioreactors , Food , Methane , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Waste Disposal, Fluid
8.
Bioresour Technol ; 304: 123006, 2020 May.
Article in English | MEDLINE | ID: mdl-32078903

ABSTRACT

Free nitrous acid based pretreatments are novel and effective chemical strategies for enhancing waste activated sludge solubilization. In this study, the synergetic effects of the combined free nitrous acid and electrochemical pretreatment on sludge solubilization and subsequent methane productivity were evaluated. The results indicated that pretreatment with 10 V plus 14.17 mg N/L substantially enhanced sludge solubilization, with the highest soluble chemical oxygen demand concentration of 3296.7 mg/L, 25.6-time higher than that without pretreatment (128.9 mg/L). Due to the potential toxicity of NO2- and NO3- to microorganisms and its bioprocesses, the methane production of sludge pretreated by free nitrous acid was significantly deteriorated. The maximum methane yield (152.0 ± 9.6 mL/g-VSadded) was observed at 10 V pretreatment alone, only 1.7% higher than that of the control (149.4 ± 1.6 mL/g-VSadded). Combined pretreatment indeed enhances the sludge solubilization and hydrolysis, but does not always induce an improved anaerobic digestion efficiency.


Subject(s)
Nitrous Acid , Sewage , Anaerobiosis , Hydrolysis , Methane , Waste Disposal, Fluid
9.
Bioresour Technol ; 304: 123005, 2020 May.
Article in English | MEDLINE | ID: mdl-32070840

ABSTRACT

Petrochemical wastewaters treatment represents a serious challenge due to the high toxicity and complex chemical components. In this study, the biodegradability, mineralization behaviors and methane productivity of eight different types of petrochemical wastewaters were evaluated in series of semi-continuous bioreactors. Methane production strongly depended on the characteristics of wastewaters and chemical constituents. The highest methane yield of 305.9 ± 2.7 mL/g-COD was achieved by purified terephthalic acid wastewater, followed by ethylene glycol, polyester, etc. Comparatively, one-step-SCN- wastewater produced the lowest methane yield (4.7 ± 0.7 mL/g-COD) owing to high toxicity and low biodegradability. Modified Gompertz model confirmed that purified terephthalic acid, ethylene glycol and polyester wastewaters had a short lag-phase of 1.2, 1.7 and 0.2 days, respectively. Nonetheless, the formation of by-products such as proteins, polysaccharides and ammonia nitrogen throughout anaerobic digestion reflected the high activity of anaerobic microorganisms, confirming the technical feasibility of anaerobic biotechnology in treating petrochemical wastewaters.


Subject(s)
Bioreactors , Wastewater , Ammonia , Anaerobiosis , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...