Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491012

ABSTRACT

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Luminescence
2.
J Phys Condens Matter ; 32(43): 435503, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32677626

ABSTRACT

Nonmagnetic graphene-based van der Waals heterotrilayers exhibit peculiar electronic features such as energetically and/or spatially resolved Dirac rings/cones. Here, using first-principles calculations we study the effect of magnetic proximity effect and mirror symmetry of antiferromagnetic CrAs2 monolayer sandwiched between graphene on the Dirac cones. We clearly identify the common vertical shift of the Dirac bands in the spin up channel. While in the spin down channel, we surprisingly observe the remarkable transverse splitting Dirac cones. The underling mechanism can be attributed to the static electric field caused by the charge transfer between the interlayers, and the polarized field arising from the weakly magnetized graphene. Both fields collectively give rise to an inequivalent space inversion broken between graphene and CrAs2 layers. Such unique Dirac states are absent in its nonmagnetic or ferromagnetic counterpart, ferromagnetic heterotrilayer with the glide symmetry, and graphene/CrAs2 heterobilayer. Our findings would provide a new insight into the correlation between Dirac cones and magnetic monolayer sandwiched between graphene.

3.
Nanoscale Res Lett ; 13(1): 404, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30542773

ABSTRACT

Searching for new stable free-standing atomically thin two-dimensional (2D) materials is of great interest in the fundamental and practical aspects of contemporary material sciences. Recently, the synthesis of layered SiAs single crystals has been realized, which indicates that their few layer structure can be mechanically exfoliated. Performing a first-principles density functional theory calculations, we proposed two dynamically and thermodynamically stable semiconducting SiAs and SiAs2 monolayers. Band structure calculation reveals that both of them exhibit indirect band gaps and an indirect to direct band even to metal transition are found by application of strain. Moreover, we find that SiAs and SiAs2 monolayers possess much higher carrier mobility than MoS2 and display anisotropic transportation like the black phosphorene, rendering them potential application in optoelectronics. Our works pave a new route at nanoscale for novel functionalities of optical devices.

4.
J Phys Condens Matter ; 28(47): 475402, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27635661

ABSTRACT

Through first-principles calculations, we predict a new superhard carbon allotrope named C 20 - T, which possesses a cubic T symmetry with space group No.198(P213). This new carbon allotrope has an all-sp (3) hybridized bonding network with 20 atoms in its primitive unit cell. The dynamic, mechanical, and thermal stabilities of this new carbon phase at zero pressure are confirmed by using a variety of state-of-the-art theoretical calculations. Interestingly, despite the fact that C 20 - T carbon has a porous structure with large cavities, our calculations identify its superhard properties with the Vickers hardness of 72.76 Gpa. The ideal tensile and shear strength of C 20 - T carbon are calculated to be 71.1 and 55.2 GPa respectively, comparable to that of c-BN. Electronic band calculations reveal that this new carbon allotrope is a transparent insulator with an indirect band gap of 5.44 eV. These results broaden our understanding of superhard carbon allotropes.

5.
Sci Rep ; 6: 27868, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27292000

ABSTRACT

It has been a long-standing puzzle why buckled dimers of the Si(001) surface appeared symmetric below ~20 K in scanning tunneling microscopy (STM) experiments. Although such symmetric dimer images were concluded to be due to an artifact induced by STM measurements, its underlying mechanism is still veiled. Here, we demonstrate, based on a first-principles density-functional theory calculation, that the symmetric dimer images are originated from the flip-flop motion of buckled dimers, driven by quantum tunneling (QT). It is revealed that at low temperature the tunneling-induced surface charging with holes reduces the energy barrier for the flipping of buckled dimers, thereby giving rise to a sizable QT-driven frequency of the flip-flop motion. However, such a QT phenomenon becomes marginal in the tunneling-induced surface charging with electrons. Our findings provide an explanation for low-temperature STM data that exhibits apparent symmetric (buckled) dimer structure in the filled-state (empty-state) images.

6.
Phys Chem Chem Phys ; 18(27): 18549-54, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27341196

ABSTRACT

Exploring the properties of noble metal atoms and nano- or subnano-clusters on the semiconductor surface is of great importance in many surface catalytic reactions, self-assembly processes, crystal growth, and thin film epitaxy. Here, the energetics and kinetic properties of a single Cu atom and previously reported Cu magic clusters on the Si(111)-(7 × 7) surface are re-examined by the state-of-the-art first-principles calculations based on density functional theory. First of all, the diffusion path and high diffusion rate of a Cu atom on the Si(111)-(7 × 7) surface are identified by mapping out the total potential energy surface of the Cu atom as a function of its positions on the surface, supporting previous experimental hypothesis that the apparent triangular light spots observed by scanning tunneling microscopy (STM) are resulted from a single Cu atom frequently hopping among adjacent adsorption sites. Furthermore, our findings confirm that in the low coverage of 0.15 monolayer (ML) the previously proposed hexagonal ring-like Cu6 cluster configuration assigned to the STM pattern is considerably unstable. Importantly, the most stable Cu6/Si(111) complex also possesses a distinct simulated STM pattern with the experimentally observed ones. Instead, an energetically preferred solid-centered Cu7 structure exhibits a reasonable agreement between the simulated STM patterns and the experimental images. Therefore, the present findings convincingly rule out the tentative six-atom model and provide new insights into the understanding of the well-defined Cu nanocluster arrays on the Si(111)-(7 × 7) surface.

7.
Sci Rep ; 6: 21879, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26903234

ABSTRACT

Design and synthesis of three-dimensional metallic carbons are currently one of the hot issues in contemporary condensed matter physics because of their fascinating properties. Here, based on first-principles calculations, we discover a novel stable metallic carbon allotrope (termed H18 carbon) in () symmetry with a mixed sp(2)-sp(3) hybridized bonding network. The dynamical stability of H18 carbon is verified by phonon mode analysis and molecular dynamics simulations, and its mechanical stability is analyzed by elastic constants, bulk modulus, and shear modulus. By simulating the x-ray diffraction patterns, we propose that H18 carbon would be one of the unidentified carbon phases observed in recent detonation experiments. The analysis of the band structure and density of states reveal that this new carbon phase has a metallic feature mainly due to the C atoms with sp(2) hybridization. This novel 3D metallic carbon phase is anticipated to be useful for practical applications such as electronic and mechanical devices.

8.
Nanoscale Res Lett ; 11(1): 77, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26858159

ABSTRACT

We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe, and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn, and Fe impurities show DMS properties, with Ni impurity showing half-metal properties, whereas Sc- and Co-doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to nonmagnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes. PACS numbers: 73.22.-f, 75.50.Pp, 75.75. + a.

9.
Phys Chem Chem Phys ; 17(25): 16351-8, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26051654

ABSTRACT

Using first-principles density functional theory calculations, we investigate the geometries, electronic structures, and thermodynamic stabilities of substitutionally doped phosphorene sheets with group III, IV, V, and VI elements. We find that the electronic properties of phosphorene are drastically modified by the number of valence electrons in dopant atoms. The dopants with an even number of valence electrons enable the doped phosphorenes to have a metallic feature, while the dopants with an odd number of valence electrons retain a semiconducting feature. This even-odd oscillating behavior is attributed to the peculiar bonding characteristics of phosphorene and the strong hybridization of sp orbitals between dopants and phosphorene. Furthermore, the calculated formation energies of various substitutional dopants in phosphorene show that such doped systems can be thermodynamically stable. These results propose an intriguing route to tune the transport properties of electronic and photoelectronic devices based on phosphorene.

10.
J Chem Phys ; 140(5): 054514, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24511959

ABSTRACT

We identify by first-principles calculations a new cubic carbon phase in I4132 (O(8)) symmetry, named K6 carbon, which has a six atom primitive cell comprising sp(3) hybridized C3 triangle rings. The structural stability is verified by phonon mode analysis. The calculated elastic constants show that the K6 carbon is a high ductile material with a density even lower than graphite. Electronic band and density of states calculations reveal that it is a metallic carbon allotrope with a high electronic density of states of ∼0.10 states/eV per atom at the Fermi level. These results broaden our understanding of the structural and electronic properties of carbon allotropes.


Subject(s)
Carbon/chemistry , Computer Simulation , Quantum Theory , Metals/chemistry
11.
J Chem Phys ; 139(19): 194709, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24320346

ABSTRACT

The adsorption and dissociation of O2 molecules on Si(111)-(7×7) surface have been studied by first-principles calculations. Our results show that all the O2 molecular species adsorbed on Si(111)-(7×7) surface are unstable and dissociate into atomic species with a small energy barrier about 0.1 eV. The single O2 molecule adsorption tends to form an ins×2 or a new metastable ins×2* structure on the Si adatom sites and the further coming O2 molecules adsorb on those structures to produce an ad-ins×3 structure. The ad-ins×3 structure is indeed highly stable and kinetically limited for diving into the subsurface layer to form the ins×3-tri structure by a large barrier of 1.3 eV. Unlike the previous views, we find that all the ad-ins, ins×2, and ad-ins×3 structures show bright images, while the ins×2*, ins×3, and ins×3-tri structures show dark images. The proposed oxidation pathways and simulated scanning tunneling microscope images account well for the experimental results and resolve the long-standing confusion and issue about the adsorption and reaction of O2 molecules on Si(111) surface.

12.
J Chem Phys ; 138(16): 164705, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-23635163

ABSTRACT

We show by first-principles calculations two types of magnetic magic Mn clusters on the Si(111)-(7 × 7) surface. The first is a small triangular Mn7 cluster stabilized by the solid-centered Mn-Si3 bonds on the top layer, and the second is a large hexagonal Mn13 cluster favored by the confining potential wells of the faulted half unit cells on the Si(111) surface. These two structural models are distinct from that of the planar group-III clusters on Si(111) and produce simulated scanning tunneling microscopy images in reasonable agreement with recent experimental observations. These results offer key insights for understanding the complex energetic landscape on the Si(111)-(7 × 7) surface, which is critical to precisely controlled growth of Mn nanocluster arrays with specific size, magnetic moment, and good uniformity.

SELECTION OF CITATIONS
SEARCH DETAIL
...