Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 11(10): 1899-1904, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33062171

ABSTRACT

Hepatocellular carcinoma (HCC) accounts for a majority of primary liver cancer and is one of the most common forms of cancer worldwide. Aberrant signaling of the FGF19-FGFR4 pathway leads to HCC in mice and is hypothesized to be a driver in FGF19 amplified HCC in humans. Multiple small molecule inhibitors have been pursued as targeted therapies for HCC in recent years, including several selective FGFR4 inhibitors that are currently being evaluated in clinical trials. Herein, we report a novel series of highly selective, covalent 2-amino-6,8-dimethyl-pyrido[2,3-d]pyrimidin-7(8H)-ones that potently and selectively inhibit FGFR4 signaling through covalent modification of Cys552, which was confirmed by X-ray crystallography. Correlative target occupancy and pFGFR4 inhibition were observed in vivo, as well as tumor regression in preclinical models of orthotopic and sorafenib-resistant HCC.

2.
J Immunol ; 195(1): 246-56, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26026062

ABSTRACT

Previous work has shown conflicting roles for Tec family kinases in regulation of TLR-dependent signaling in myeloid cells. In the present study, we performed a detailed investigation of the role of the Tec kinases Btk and Tec kinases in regulating TLR signaling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less proinflammatory cytokines in response to TLR stimulation than do wild-type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more proinflammatory cytokines than do wild-type cells. We then compared the phosphoproteome regulated by Tec kinases and LPS in primary peritoneal and bone marrow-derived macrophages. From this analysis we determined that Tec kinases regulate different signaling programs in these cell types. In additional studies using bone marrow-derived macrophages, we found that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signaling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signaling in many types of myeloid cells. However, our data also support a cell type-specific TLR inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signaling via PI3K.


Subject(s)
Macrophages/immunology , Phosphoproteins/immunology , Protein-Tyrosine Kinases/immunology , Agammaglobulinaemia Tyrosine Kinase , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Gene Expression Profiling , Gene Expression Regulation , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Peritoneal Cavity/cytology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Phosphoproteins/genetics , Phosphorylation , Primary Cell Culture , Protein-Tyrosine Kinases/genetics , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
3.
Mol Cancer Ther ; 13(6): 1468-79, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24723450

ABSTRACT

Patients with non-small cell lung carcinoma (NSCLC) with activating mutations in epidermal growth factor receptor (EGFR) initially respond well to the EGFR inhibitors erlotinib and gefitinib. However, all patients relapse because of the emergence of drug-resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. Second-generation irreversible EGFR inhibitors are effective against T790M mutations in vitro, but retain affinity for wild-type EGFR (EGFR(WT)). These inhibitors have not provided compelling clinical benefit in T790M-positive patients, apparently because of dose-limiting toxicities associated with inhibition of EGFR(WT). Thus, there is an urgent clinical need for therapeutics that overcome T790M drug resistance while sparing EGFR(WT). Here, we describe a lead optimization program that led to the discovery of four potent irreversible 2,4-diaminopyrimidine compounds that are EGFR mutant (EGFR(mut)) selective and have been designed to have low affinity for EGFR(WT). Pharmacokinetic and pharmacodynamic studies in H1975 tumor-bearing mice showed that exposure was dose proportional resulting in dose-dependent EGFR modulation. Importantly, evaluation of normal lung tissue from the same animals showed no inhibition of EGFR(WT). Of all the compounds tested, compound 3 displayed the best efficacy in EGFR(L858R/T790M)-driven tumors. Compound 3, now renamed CO-1686, is currently in a phase I/II clinical trial in patients with EGFR(mut)-advanced NSCLC that have received prior EGFR-directed therapy.


Subject(s)
4-Aminopyridine/analogs & derivatives , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Neoplasm Recurrence, Local/drug therapy , 4-Aminopyridine/administration & dosage , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials as Topic , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Humans , In Vitro Techniques , Mice , Mutation , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Xenograft Model Antitumor Assays
4.
Cancer Discov ; 3(12): 1404-15, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24065731

ABSTRACT

UNLABELLED: Patients with non-small cell lung cancer (NSCLC) with activating EGF receptor (EGFR) mutations initially respond to first-generation reversible EGFR tyrosine kinase inhibitors. However, clinical efficacy is limited by acquired resistance, frequently driven by the EGFR(T790M) mutation. CO-1686 is a novel, irreversible, and orally delivered kinase inhibitor that specifically targets the mutant forms of EGFR, including T790M, while exhibiting minimal activity toward the wild-type (WT) receptor. Oral administration of CO-1686 as single agent induces tumor regression in EGFR-mutated NSCLC tumor xenograft and transgenic models. Minimal activity of CO-1686 against the WT EGFR receptor was observed. In NSCLC cells with acquired resistance to CO-1686 in vitro, there was no evidence of additional mutations or amplification of the EGFR gene, but resistant cells exhibited signs of epithelial-mesenchymal transition and demonstrated increased sensitivity to AKT inhibitors. These results suggest that CO-1686 may offer a novel therapeutic option for patients with mutant EGFR NSCLC. SIGNIFICANCE: We report the preclinical development of a novel covalent inhibitor, CO-1686, that irreversibly and selectively inhibits mutant EGFR, in particular the T790M drug-resistance mutation, in NSCLC models. CO-1686 is the fi rst drug of its class in clinical development for the treatment of T790M-positive NSCLC, potentially offering potent inhibition of mutant EGFR while avoiding the on-target toxicity observed with inhibition of the WT EGFR.


Subject(s)
Acrylamides/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Acrylamides/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/metabolism , Female , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Molecular Targeted Therapy , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/metabolism , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Xenograft Model Antitumor Assays
5.
J Med Chem ; 56(3): 712-21, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23360348

ABSTRACT

PI3Kα has been identified as an oncogene in human tumors. By use of rational drug design, a targeted covalent inhibitor 3 (CNX-1351) was created that potently and specifically inhibits PI3Kα. We demonstrate, using mass spectrometry and X-ray crystallography, that the selective inhibitor covalently modifies PI3Kα on cysteine 862 (C862), an amino acid unique to the α isoform, and that PI3Kß, -γ, and -δ are not covalently modified. 3 is able to potently (EC(50) < 100 nM) and specifically inhibit signaling in PI3Kα-dependent cancer cell lines, and this leads to a potent antiproliferative effect (GI(50) < 100 nM). A covalent probe, 8 (CNX-1220), which selectively bonds to PI3Kα, was used to investigate the duration of occupancy of 3 with PI3Kα in vivo. This is the first report of a PI3Kα-selective inhibitor, and these data demonstrate the biological impact of selectively targeting PI3Kα.


Subject(s)
Drug Discovery , Isoenzymes/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Nuclear Magnetic Resonance, Biomolecular , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemistry , Signal Transduction
6.
Nat Chem Biol ; 7(1): 22-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21113170

ABSTRACT

Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a target in a protein family. We have successfully applied this approach to the important therapeutic target HCV protease, which has broad implications for the design of other selective protease inhibitors.


Subject(s)
Cysteine Proteinase Inhibitors/therapeutic use , Cysteine/antagonists & inhibitors , Drug Design , Oligopeptides/therapeutic use , Biocatalysis , Biochemistry/methods , Crystallography, X-Ray , Cysteine/metabolism , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepacivirus/growth & development , Oligopeptides/chemistry , Oligopeptides/pharmacology , Virology/methods
7.
J Asian Nat Prod Res ; 7(2): 121-6, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15621613

ABSTRACT

A convenient method for the stereoselective syntheses of beta-amino acids with alpha-substitutions has been developed. This synthetic route involves the preparation of isoxazolidinones through hydroxylamine addition to unsaturated esters and subsequent hydrogenation. This procedure is also useful for the stereoselective syntheses of alpha-deuterated beta-amino acids.


Subject(s)
Amino Acids/chemical synthesis , Amino Acids/chemistry , Esters/chemistry , Hydrogenation , Hydroxylamine/chemistry , Magnetic Resonance Spectroscopy , Oxazolidinones/chemical synthesis , Oxazolidinones/chemistry , Stereoisomerism
8.
Org Lett ; 6(24): 4455-8, 2004 Nov 25.
Article in English | MEDLINE | ID: mdl-15548049

ABSTRACT

A bridging chemistry process was developed to form an ether bridge between 6-O and 11-O of erythromycin A via a tandem or stepwise palladium-catalyzed bis-pi-allylation. By applying this bridging process, new 6,11-O-bridged bicyclic ketolides (BBKs) were synthesized. These BBKs showed good antibacterial activities against the macrolide-susceptible strains as well as mef-resistant strains and served as a good core for further modifications to study the structure-activity relationship (SAR) and to overcome bacterial resistance. [reaction: see text]

9.
J Org Chem ; 62(21): 7430-7434, 1997 Oct 17.
Article in English | MEDLINE | ID: mdl-11671860

ABSTRACT

Enantioselective syntheses of beta-D-isoxazolidinyl pyrimidine and purine nucleosides are described. Michael addition of N-methylhydroxylamine to alpha,beta-unsaturated esters was investigated. Both E- and Z-esters 10E and 10Z produced the same intermediates which were cyclized to isoxazolidin-5-ones 8 with high diastereoselectivity. The major isoxazolidin-5-one 8a was reduced and acetylated to acetate 11 for the preparation of nucleosides. The coupling reaction of acetate 11 with silylated thymine, uracil, and N(4)-benzoylcytosine using TMSOTf as a Lewis acid yielded the corresponding nucleoside derivatives. The related purine analogue was produced by the BF(3).Et(2)O-catalyzed condensation of acetate 11 with silylated 6-chloropurine. The predominant formation of the cis isomers for both pyrimidine and purine analogues was unexpected and the reaction mechanism was investigated. The nucleoside intermediates were converted to the corresponding 1,2-diols, which were latter oxidized and reduced to the desired monoalcohol products such as 14, 16, 19, and 24.

SELECTION OF CITATIONS
SEARCH DETAIL
...