Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Sustain Chem Eng ; 12(27): 10075-10088, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38994545

ABSTRACT

Calcium carbonate (CaCO3) precipitation plays a significant role during the carbon capture process; however, the mechanism is still only partially understood. Understanding the atomic-level carbonation mechanism of cementitious materials can promote the mineralization capture, immobilization, and utilization of carbon dioxide, as well as the improvement of carbonated cementitious materials' performance. Therefore, based on molecular dynamics simulations, this paper investigates the effect of Si/Al concentrations in cementitious materials on carbonation kinetics. We first verify the force field used in this paper. Then, we analyze the network connectivity evolution, the number and size of the carbonate cluster during gelation, the polymerization rate, and the activation energy. Finally, in order to reveal the reasons that caused the evolution of polymerization rate and activation energy, we analyze the local stress and charge of atoms. Results show that the Ca-Oc bond number and carbonate cluster size increase with the decrease of the Si/Al concentration and the increase of temperature, leading to the higher amorphous calcium carbonate gel polymerization degree. The local stress of each atom in the system is the driving force of the gelation transition. The presence of Si and Al components increases the atom's local stress and average charge, thus causing the increase of the energy barrier of CaCO3 polymerization and the activation energy of carbonation.

2.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38884405

ABSTRACT

It is significant to investigate the calcium carbonate (CaCO3) precipitation mechanism during the carbon capture process; nevertheless, CaCO3 precipitation is not clearly understood yet. Understanding the carbonation mechanism at the atomic level can contribute to the mineralization capture and utilization of carbon dioxide, as well as the development of new cementitious materials with high-performance. There are many factors, such as temperature and CO2 concentration, that can influence the carbonation reaction. In order to achieve better carbonation efficiency, the reaction conditions of carbonation should be fully verified. Therefore, based on molecular dynamics simulations, this paper investigates the atomic-scale mechanism of carbonation. We investigate the effect of carbonation factors, including temperature and concentration, on the kinetics of carbonation (polymerization rate and activation energy), the early nucleation of calcium carbonate, etc. Then, we analyze the local stresses of atoms to reveal the driving force of early stage carbonate nucleation and the reasons for the evolution of polymerization rate and activation energy. Results show that the higher the calcium concentration or temperature, the higher the polymerization rate of calcium carbonate. In addition, the activation energies of the carbonation reaction increase with the decrease in calcium concentrations.

3.
Sci Rep ; 13(1): 2826, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36801908

ABSTRACT

Iron and steel plants emit a large amount of CO2 and SO2 in the production process, and the high concentrations of acid gases lead to serious corrosion damage of concrete structures. In this paper, the environmental characteristics and corrosion damage degree of concrete in a 7-year-old coking ammonium sulfate workshop were investigated, and the neutralization life prediction of the concrete structure was carried out. Besides, the corrosion products were analyzed through concrete neutralization simulation test. The average temperature and relative humidity in the workshop were 34.7 °C and 43.4%, and they were 1.40 times higher and 1.70 times less than those of the general atmospheric environment, respectively. Both the concentrations of CO2 and SO2 were significantly different in various sections of the workshop, and they were much higher than those of the general atmospheric environment. The appearance corrosion and compressive strength loss of concrete were more serious in the sections with high SO2 concentration, such as vulcanization bed section and crystallization tank section. The neutralization depth of concrete in the crystallization tank section was the largest, with an average value of 19.86 mm. The corrosion products gypsum and CaCO3 were obviously visible in the surface layer of concrete, while only CaCO3 could be observed at 5 mm. The prediction model of concrete neutralization depth was established, and the remaining neutralization service life in the warehouse, synthesis section (indoor), synthesis section (outdoor), vulcanization bed section, and crystallization tank section were 69.21 a, 52.01 a, 88.56 a, 29.62 a, and 7.84 a, respectively.

4.
Materials (Basel) ; 15(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079278

ABSTRACT

Iron and steel industry emits a large amount of CO2 and SO2 in the process of steelmaking, and these acid gases lead to the serious corrosion damage of concrete structures. In this paper, the environmental characteristics and corrosion degree of concrete in a 41-year-old steelworks were investigated, and the neutralization life prediction of the concrete structure was carried out. The results showed that the temperature, relative humidity, CO2 concentration, and SO2 concentration in the steelworks were 1.32, 0.62, 1.28, and 13.93 times higher than those of the general atmospheric environment, respectively. These environmental characteristics in various sections were significantly different. The appearance change of concrete in the ingot casting bay was more serious than that of concrete in the billet bay. Both the compressive strength of concrete in the ingot casting bay and billet bay decreased, and the strength in the billet bay was relatively low. The neutralization depth of concrete in the ingot casting bay was 2.35 times larger than that of concrete in the billet bay. The prediction model of concrete neutralization depth was established, and the remaining neutralization service life in the ingot casting bay and billet bay were 194.68 a and 202.07 a, respectively.

5.
Materials (Basel) ; 15(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35454484

ABSTRACT

The hydration process and compressive strength and flexural strength development of sulphate-resistant Portland cement (SRPC) curing at 20 °C, 40 °C, 50 °C, and 60 °C were studied. In addition, MIP, XRD, SEM, and a thermodynamic simulation (using Gibbs Energy Minimization Software (GEMS)) were used to study the pore structure, the types, contents, and transformations of hydration products, and the changes in the internal micro-morphology. The results indicate that, compared with normal-temperature curing (20 °C), the early compressive strength (1, 3, and 7 d) of SRPC cured at 40~60 °C increased by 10.1~57.4%, and the flexural strength increased by 1.8~21.3%. However, high-temperature curing was unfavorable for the development of compressive strength and flexural strength in the later period (28~90 d), as they were reduced by 1.5~14.6% and 1.1~25.5%, respectively. With the increase in the curing temperature and curing age, the internal pores of the SRPC changed from small pores to large pores, and the number of harmful pores (>50 nm) increased significantly. In addition, the pore structure was further coarsened after curing at 60 °C for 90 d, and the number of multiple harmful pores (>200 nm) increased by 17.9%. High-temperature curing had no effect on the types of hydration products of the SRPC but accelerated the formation rate of hydration products. The production of the hydration products C-S-H increased by 13.5%, 18.6%, and 22.8% after curing at 40, 50, and 60 °C for 3 d, respectively. The stability of ettringite (AFt) reduced under high-temperature curing, and its diffraction peak was not observed in the XRD patterns. When the curing temperature was higher than 50 °C, AFt began to transform into monosulfate, which consumed more tricalcium aluminate hydrate and inhibited the formation of "delayed ettringite". Under high-temperature curing, the compactness of the internal microstructure of the SRPC decreased, and the distribution of hydration products was not uniform, which affected the growth in its strength during the later period.

6.
Materials (Basel) ; 15(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35161185

ABSTRACT

The compressive stress-strain behaviors of early-aged cementitious grout specimens were experimentally investigated, and the differences of characteristic parameters of the stress-strain curve and the energy evolution law of each specimen under uniaxial compression were discussed in this study. The results indicate that with an increase in the specimen age, the peak stress, peak strain, ultimate strain, elastic modulus, peak secant modulus, strain ductility coefficient, and energy-dissipation coefficient of the prism specimens gradually improved. Additionally, a comparison of the test results of cementitious grout specimens and concrete specimens with the same age reveals that the peak stress, peak strain, and ultimate strain of cementitious grout specimens were greater than that of concrete specimens, the elastic modulus and peak secant modulus of the specimens were less than that of concrete specimens, and the strain ductility coefficient and energy-dissipation coefficient show no consistent conclusions with respect to the material type. Moreover, comparing the energy evolution curves of specimens with different specimen ages shows that the decrease rate of the elastic strain rate and the increase rate of the dissipated energy rate gradually decreased with the increase in specimen age. The elastic strain rate and dissipated energy rate of the CGM-270 specimen and control specimens were greater than that of other specimens, and the decrease rate of the elastic strain rate was less than that of other specimens. Based on the statistical damage theory, a statistically stochastic damage constitutive model was derived by considering the characteristics of cementitious grout according to the compression test results. A comparison of the proposed models with the experimental results indicated that the proposed stress-strain constitutive models were sufficiently accurate.

7.
Materials (Basel) ; 14(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34947410

ABSTRACT

With the development of infrastructure, there are growing numbers of high geothermal environments, which, therefore, form a serious threat to tunnel structures. However, research on the changes in mechanical properties of shotcrete under high temperatures and humid environments are insufficient. In this paper, the combination of various temperatures (20 °C/40 °C/60 °C) and 55% relative humidity is used to simulate the effect of environment on the strength and stress-strain curve of basalt fiber reinforced shotcrete. Moreover, a constitutive model of shotcrete considering the effect of fiber content and temperature is established. The results show that the early mechanical properties of BFRS are improved with the increase in curing temperature, while the compressive strength at a later age decreases slightly. The 1-day and 7-day compressive strength of shotcrete at 40 °C and 60 °C increased by 10.5%, 41.1% and 24.1%, 66.8%, respectively. The addition of basalt fiber can reduce the loss of later strength, especially for flexural strength, with a increase rate of 11.9% to 39.5%. In addition, the brittleness of shotcrete increases during high temperature curing, so more transverse cracks are observed in the failure mode, and the peak stress and peak strain decrease. The addition of basalt fiber can improve the ductility and plasticity of shotcrete and increase the peak strain of shotcrete. The constitutive model is in good agreement with the experimental results.

8.
Materials (Basel) ; 14(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670909

ABSTRACT

The effect of fibre reinforcement on the chloride diffusion property of concrete is controversial, and the coupling effect of sulphate erosion and drying-wetting cycles in marine environments has been neglected in previous studies. In this study, the chloride diffusion property of hybrid basalt-polypropylene fibre-reinforced concrete subjected to a combined chloride-sulphate solution under drying-wetting cycles was investigated. The effects of basalt fibre (BF), polypropylene fibre (PF), and hybrid BP-PF on the chloride diffusion property were analysed. The results indicate that the presence of sulphate inhibits the diffusion of chloride at the early stage of erosion. However, at the late stage of erosion, sulphate does not only accelerate the diffusion of chloride by causing cracking of the concrete matrix but also leads to a decrease in the alkalinity of the pore solution, which further increases the risk of corrosion of the reinforcing steel. An appropriate amount of fibre can improve the chloride attack resistance of concrete at the early stage. With the increase in erosion time, the fibre effectively prevents the formation and development of sulphate erosion microcracks, thus reducing the adverse effects of sulphate on the resistance of concrete to chloride attack. The effects of sulphate and fibre on the chloride diffusion property were also elucidated in terms of changes in corrosion products, theoretical porosity, and the fibre-matrix interface transition zone.

9.
Materials (Basel) ; 13(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751798

ABSTRACT

This paper presents an experimental investigation of the sulfuration mechanism of concrete. The microstructure, mineral phase composition, substance content, and pH of the concrete were determined using scanning electron microscopy, X-ray diffraction, comprehensive thermal analysis, and pore-solution pH test. It was observed that light-grey spots appeared on the surface of the specimen, and a large amount of powdery precipitated substances appeared. At the initial stage of sulfuration reaction, the formation of ettringite blocked the concrete pores and densified its cracks and voids. Subsequently, ettringite reacted with H+ to form gypsum, and the continuous increase in gypsum in the pores increased the number of cracks and broadened their width. Gypsum was the final product of the sulfuration reaction, and the mass percentage of gypsum in the powdery precipitated substances at different water-cement ratios was more than 50%. When the water-cement ratios was 0.37, 0.47, and 0.57, the highest Ca(OH)2 content was found for the lowest water-cement ratio. As the water-cement ratios increased, the amount of powdery precipitated substances decreased and the CaCO3 content and pH increased.

10.
Materials (Basel) ; 12(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861221

ABSTRACT

The volume expansion of reinforcement corrosion products resulting from the corrosion of steel reinforcement embedded into concrete causes the concrete's protective layer to crack or spall, reducing the durability of the concrete structure. Thus, it is necessary to analyze concrete cracking caused by reinforcement corrosion. This study focused on the occurrence of non-uniform reinforcement corrosion in a natural environment. The characteristics of the rust layer were used to deduce the unequal radial displacement distribution function of concrete around both angular and non-angular bars. Additionally, the relationship between the corrosion ratio and the radial displacement of the concrete around the bar was established quantitatively. Concrete cracking due to the non-uniform corrosion of reinforcements was simulated using steel bars embedded in concrete that were of uneven displacement because of rust expansion. The distribution of the principal tensile stress around the bar was examined. A formula for calculating the critical radial displacement at the point when cracking began was obtained and used to predict the corrosion ratio of the concrete cover. The determined analytical corrosion ratio agreed well with the test result. The effect factor analysis based on the finite element method indicated that increasing the concrete strength and concrete cover thickness delays concrete cracking and that the adjacent rebar causes the stress superposition phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL
...