Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 106(3): 805-814, 2018 03.
Article in English | MEDLINE | ID: mdl-29067774

ABSTRACT

To establish a recellularization kidney model by using adipose tissue-derived stem cells (ADSCs) as seeding cells and to investigate the growth and differentiation of ADSCs in decellularized kidney scaffolds. ADSCs were isolated using a modified method and then identified using flow cytometry analysis. Osteogenesis and adipogenesis differentiation were performed. Rat kidneys were decellularized using 0.5% sodium dodecyl sulfate. Immunofluorescence, immunohistochemistry, and scanning electron microscope were conducted to examine the scaffold microstructure. The decellularized kidney scaffold was seeded with ADSCs antegrade through the artery or retrograde through the ureter and cultured for 5-10 days. Hematoxylin and eosin staining, immunofluorescence, and immunohistochemistry were applied to assess growth and differentiation of seeding cells within the scaffold. ADSCs populated within the glomerular, vascular, and tubular area of kidney scaffolds. Cells differentiated toward endothelial or tubular cells. Stromal cell-derived factor 1 promoted cell attachment in the scaffold. These findings suggest that ADSCs can be used as an additional new source of seeding cells within decellularized kidney scaffold. This combination may offer an alternative to donor kidney transplant. In this way, autologous ADSCs can be utilized as seeding cells in cell-scaffold kidney regeneration for further clinical transplantation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 805-814, 2018.


Subject(s)
Adipose Tissue/cytology , Kidney/physiology , Stem Cells/cytology , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Differentiation , Cell Proliferation , Male , Perfusion , Rats, Wistar
2.
Sci Rep ; 7(1): 18053, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273785

ABSTRACT

Various methods have been used to reconstruct the penis. The objective of this study was to investigate the feasibility of constructing engineered corpus cavernosum with primary mesenchymal stem cells (MSCs) in a rabbit model in vitro. Acellular corporal matrices (ACMs) were obtained from adult rabbit penile tissues through an established decellularization procedure. MSCs were separated, purified, and then seeded on ACMs to construct engineered corpus cavernosum. The seeded ACMs were subsequently cultured in an incubator for 14 days. Histological analyses showed that MSCs seeded on the ACMs had proliferated and were well distributed. Detection of CD31, vWF, smooth muscle actin (SMA), and myosin protein as well as vWF and myosin mRNA revealed that the MSCs had differentiated into endothelial cells and smooth muscle cells. In addition, cell morphology of the engineered corpus cavernosum was directly observed by transmission electron microscopy. This study demonstrated that engineered corpus cavernosum could be successfully constructed using primary MSCs in vitro. This technology represents another step towards developing engineered corpus cavernosum in vitro.


Subject(s)
Cell Differentiation/physiology , Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , Myocytes, Smooth Muscle/cytology , Penis/cytology , Tissue Engineering/methods , Animals , Male , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...