Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 13: 894365, 2022.
Article in English | MEDLINE | ID: mdl-35795351

ABSTRACT

Nitrogen (N) addition can increase the vegetative growth, improve the plant production, and restore the degraded terrestrial ecosystems. But, it simultaneously aggravates the soil phosphorus (P) limitation for plant growth, thus affecting its positive effects on ecosystems. However, how plants and soil microorganisms will change under conditions of high P content in soil is still unknown. In this study, we explored the effects of three levels of N addition (0, 7.5, and 15 g.N.m-2.year-1) on plants and microorganisms at the high P addition level (13.09 g.P.m-2.year-1) in the alpine steppe. We found that the soil microbial community composition had no significant difference between different N addition levels, and the soil AN and AP had a significant effect on the phospholipid fatty acid (PLFA) composition. The abundance of the core PLFAs (i.e., 16:1ω7c, 16:0, a17:1, i17:0, 18:1ω9c, and 18:1ω7c) also remained unchanged after N addition, and microbes at individual, population, and community levels were all correlated with SOM, AK, AN, and pH. Conversely, plant biomass and nutrient content showed linear trends with increasing N addition, especially the dominant functional groups. Specifically, the biomass and plant tissue N content of Gramineae, and the total N content of aboveground biomass were all improved by N addition. They were correlated with soil ammonium and AP. The structural equation modeling (SEM) demonstrated that N addition had a direct negative effect on soil microbial biomass, but an indirect positive effect on aboveground biomass via soil ammonium. These findings clarify the importance of N-amendment in regulating plants and microorganisms under high P conditions and provide a better understanding of the N-added effects in the alpine steppe.

2.
Glob Chang Biol ; 27(20): 5198-5210, 2021 10.
Article in English | MEDLINE | ID: mdl-34228871

ABSTRACT

Changes in ecological processes over time in ambient treatments are often larger than the responses to manipulative treatments in climate change experiments. However, the impacts of human-driven environmental changes on the stability of natural grasslands have been typically assessed by comparing differences between manipulative plots and reference plots. Little is known about whether or how ambient climate regulates the effects of manipulative treatments and their underlying mechanisms. We collected two datasets, one a 36-year long-term observational dataset from 1983 to 2018, and the other a 10-year manipulative asymmetric warming and grazing experiment using infrared heaters with moderate grazing from 2006 to 2015 in an alpine meadow on the Tibetan Plateau. The 36-year observational dataset shows that there was a nonlinear response of community stability to ambient temperature with a positive relationship between them due to an increase in ambient temperature in the first 25 years and then a decrease in ambient temperature thereafter. Warming and grazing decreased community stability with experiment duration through an increase in legume cover and a decrease in species asynchrony, which was due to the decreasing background temperature through time during the 10-year experiment period. Moreover, the temperature sensitivity of community stability was higher under the ambient treatment than under the manipulative treatments. Therefore, our results suggested that ambient climate may control the directional trend of community stability while manipulative treatments may determine the temperature sensitivity of the response of community stability to climate relative to the ambient treatment. Our study emphasizes the importance of the context dependency of the response of community stability to human-driven environmental changes.


Subject(s)
Climate Change , Grassland , Herbivory , Temperature
3.
Sci Total Environ ; 792: 148376, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34147809

ABSTRACT

The fragile aquatic ecosystem on the Tibetan Plateau is severely threatened by human activities and climate change. Dissolved organic matter (DOM) is a vital indicator of surface water quality; however, its comprehensive molecular analysis is challenged due to its low concentration (total organic carbon less than 0.5 mg/L) in alpine areas. This study proposes the fluorescence excitation-emission matrix (FEEM) to fingerprint DOM in a typical headstream in the Namco basin, one of the largest lake regions in Tibet. We found that the FEEM can sensitively detect low-concentration pollution traces and the variation of DOM along the flow from the ice sheet, through the wetland, eventually to the estuary of the lake. The fluorescence intensity indices for biodegradable carbon (fT/C) and humification (HIXem) responded drastically along the flow. Fluorescence regional integrals (FRIs) clearly reflected the overall increase of protein-like substances and decrease of humus-like substances along the flow, whereas this tendency was reversed when passing through the wetland. The FRIs-derived secondary parameters (HPP, HMP, WLP and SSP) further sensed likely variations in hydrophobicity, humification degree, excited-state fluorophore energy and Stokes shift. Parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2DCOS) of the FEEM signals witnessed the trade-off among tyrosine-like organics (C1 peak), tryptophan-like byproducts (C2 peak) and humus-like remains (C3 peak) along the flow. The C1 component can be traced back to the vicinity of the ice sheet exit, presumably due to human and animal activities. The wetland can absorb or convert part of the C1 component into C2 or C3 products, demonstrating the function of regulating water quality and buffering environmental impacts. The spectroscopic indicators evaluated in this study may provide tools for diagnosing early traces of water pollution and ecological instability in alpine areas.


Subject(s)
Ecosystem , Water Quality , Factor Analysis, Statistical , Humans , Humic Substances/analysis , Lakes , Spectrometry, Fluorescence , Tibet
4.
Front Plant Sci ; 12: 658702, 2021.
Article in English | MEDLINE | ID: mdl-33968115

ABSTRACT

A strong negative non-linear relationship exists between stomatal density (SD) and size (SS) or length (SL), which is of high importance in gas exchange and plant evolution. However, the cause of this relationship has not been clarified. In geometry, SD has an intrinsic relationship with SS-1 or SL-2, which is defined as a geometric constraint here. We compiled global data to clarify the influence of this geometric constraint on the SD-SS relationship. The log-log scaling slope of the relationship between SD and SS and between SD and SL was not significantly different from -1 and -2, respectively. Although the non-geometric effect drove the SD-SS curve away from the power function with -1, a larger influence of the geometric constraint on SD was found. Therefore, the higher geometric constraint possibly causes the SD-SS relationship to be inevitably non-linear and negative. Compared to pteridophyta and gymnosperms, the geometric constraint was lower for angiosperm species, possibly due to most of them having smaller stomata. The relaxation of the geometric constraint seems to extend the upper range of SD in angiosperm species and hence enable them to exploit a wide range of environments.

5.
Front Plant Sci ; 10: 1310, 2019.
Article in English | MEDLINE | ID: mdl-31681391

ABSTRACT

Few studies have focused on the response of plant community phenology to temperature change using manipulative experiments. A lack of understanding of whether responses of community reproductive and vegetative phenological sequences to warming and cooling are asymmetrical or symmetrical limits our capacity to predict responses under warming and cooling. A reciprocal transplant experiment was conducted for 3 years to evaluate response patterns of the temperature sensitivities of community phenological sequences to warming (transferred downward) and cooling (transferred upward) along four elevations on the Tibetan Plateau. We found that the temperature sensitivities of flowering stages had asymmetric responses to warming and cooling, whereas symmetric responses to warming and cooling were observed for the vegetative phenological sequences. Our findings showed that coverage changes of flowering functional groups (FFGs; i.e., early-spring FFG, mid-summer FFG, and late-autumn FFG) and their compensation effects combined with required accumulated soil temperatureto codetermined the asymmetric and symmetric responses of community phenological sequences to warming and cooling. These results suggest that coverage change in FFGs on warming and cooling processes can be a primary driver of community phenological variation and may lead to inaccurate phenlogical estimation at large scale, such as based on remote sensing.

6.
Transplant Proc ; 51(6): 1699-1705, 2019.
Article in English | MEDLINE | ID: mdl-31399160

ABSTRACT

BACKGROUND: Rejection and infection are 2 major complications affecting the health and survival of patients receiving an allograft organ transplantation. We describe a diagnostic assay that simultaneously monitors for rejection and infection in recipients of kidney transplant by sequencing of cell-free DNA (cfDNA) in plasma. METHODS: By using cfDNA in plasma, we established a noninvasive method that simultaneously monitors rejection and infection in patients with a history of organ transplant. A total of 6200 single-nucleotide polymorphisms were captured by liquid hybridization and sequenced by next-generation sequencing. The donor-derived cfDNA (ddcfDNA) level was calculated based on maximum likelihood estimation, without relying on the donor's genotype. We also analyzed the nonhuman cfDNA to test for infections in the patients' plasma. RESULTS: Artificial ddcfDNA levels quantified by a donor-dependent and donor-independent algorithm were significantly correlated, with the multivariate coefficient of determination, or R2 value, of 0.999. This technique was applied on 30 patients (32 samples) after kidney transplantation, and a significant difference was observed on the ddcfdNA levels between nonrejection and rejection. Furthermore, 1 BK virus infection and 1 cytomegalovirus infection were revealed by this method, and the enrichment efficiency of the viral sequences was 114 and 489 times, respectively, which are consistent with clinical results. CONCLUSION: This method can be used to simultaneously monitor for acute rejection as well as a broad spectrum of infections for patients of allograft organ transplant because it provides comprehensive information for clinicians to optimize immunosuppression therapy.


Subject(s)
Cell-Free Nucleic Acids/blood , Graft Rejection/diagnosis , Infections/diagnosis , Organ Transplantation/adverse effects , Postoperative Complications/diagnosis , Adult , Algorithms , Female , Graft Rejection/blood , Humans , Immunocompromised Host , Infections/blood , Infections/immunology , Male , Middle Aged , Postoperative Complications/blood
7.
Sci Total Environ ; 656: 373-387, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30513428

ABSTRACT

Maize, rice, wheat and soybean-the major staple food crops in China-have a crucial role in national food security and economic development. Predictions of changes in the requirements for irrigation water in food crop production under climate change may provide scientific support for the optimum allocation of water resources and measures to mitigate climate change. We conducted a spatial grid-based analysis using projections of future climate generated by a bias-correction and spatial disaggregation multi-model ensemble for three representative concentration pathway scenarios (RCP2.6, RCP4.5 and RCP8.5) adopted by the fifth phase of the Coupled Model Intercomparison Project. We investigated the effects of climate change associated with increasing temperature, changed precipitation and increased concentrations of atmospheric carbon dioxide (CO2) on the irrigation water requirements of maize, rice, wheat and soybean in China at the end of the 21st century (2081-2100). Our results indicate that the irrigation water requirements of maize and wheat are driven by temperature and especially by CO2 concentrations in the northwest interior area as a result of the low rainfall and high rates of evaporation; the irrigation water requirement of soybean is influenced by a combined effect of temperature, precipitation and CO2 concentration, whereas the irrigation water requirement for rice is dominated by precipitation alone in the southern coastal region, which has high rainfall. The irrigation water requirements of crops decrease mainly as a result of the beneficial effects of CO2 on plant growth in China. The regions requiring vast amounts of irrigation water as a result of climate change are mainly concentrated in northwestern China. The effects of climate change affect the requirement for irrigation water, especially under high-emission scenarios, and should be studied further to design appropriate adaptation strategies for the management of agricultural water to maintain the sustainable development of agriculture.


Subject(s)
Agricultural Irrigation/statistics & numerical data , Carbon Dioxide/analysis , Climate Change , Crops, Agricultural/physiology , Rain , Temperature , China , Food Supply , Models, Theoretical , Oryza/growth & development , Oryza/physiology , Snow , Glycine max/growth & development , Glycine max/physiology , Triticum/growth & development , Triticum/physiology , Zea mays/growth & development , Zea mays/physiology
8.
Sci Total Environ ; 601-602: 518-531, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28575830

ABSTRACT

Predictions of changes in the distribution of areas suitable for the cultivation of rice and maize in China under future climate change scenarios may provide scientific support for the optimization of crop production and measures to mitigate climate change. We conducted a spatial grid-based analysis using projections of future climate generated by the National Center for Atmospheric Research Community Climate System Model version 4 for two representative concentration pathway scenarios (RCP2.6 and RCP8.5), adopted by the fifth phase of the Coupled Model Intercomparison Project to study the areas suitable for the cultivation of rice and maize in China. We investigated the migration of the centers of gravity of the cultivation areas based on climatic and hydrological factors from 2021 to 2100. The results indicated that, under RCP2.6, the areas suitable for the cultivation of rice were located throughout China, except for on the Qinghai-Tibetan Plateau, while the areas suitable for the cultivation of maize were located in northern, southwestern, central, eastern, parts of northeastern and some northern parts of western China. The distributions of both crops under RCP2.6 showed little change over time. In contrast, the areas suitable for the cultivation of rice and maize under RCP8.5 shifted northward and expanded from northwestern to northern China, as a result of greater warming in northern China and the faster warming trend under RCP8.5. This scenario would require much stronger climate mitigation policies to maintain the stable development of agriculture and to slow down the future migration of crop cultivation areas in China. The distribution of areas suitable for the cultivation of rice and maize should be studied further to design appropriate adaptation strategies for dealing with future climate change.

9.
Nat Commun ; 7: 12489, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27535205

ABSTRACT

Organisms' life cycles consist of hierarchical stages, from a single phenological stage (for example, flowering within a season), to vegetative and reproductive phases, to the total lifespan of the individual. Yet phenological events are typically studied in isolation, limiting our understanding of life history responses to climate change. Here, we reciprocally transfer plant communities along an elevation gradient to investigate plastic changes in the duration of sequential phenological events for six alpine species. We show that prolonged flowering leads to longer reproductive phases and activity periods when plants are moved to warmer locations. In contrast, shorter post-fruiting leaf and flowering stages led to shorter vegetative and reproductive phases, respectively, which resulted in shorter activity periods when plants were moved to cooler conditions. Therefore, phenological responses to warming and cooling do not simply mirror one another in the opposite direction, and low temperature may limit reproductive allocation in the alpine region.


Subject(s)
Cold Temperature , Ecosystem , Grassland , Hot Temperature , Reproduction
10.
AoB Plants ; 82015 Dec 07.
Article in English | MEDLINE | ID: mdl-26644341

ABSTRACT

Both phenotypic plasticity and local adaptation may allow widely distributed plant species to either acclimate or adapt to environmental heterogeneity. Given the typically low genetic variation of clonal plants across their habitats, phenotypic plasticity may be the primary adaptive strategy allowing them to thrive across a wide range of habitats. In this study, the mechanism supporting the widespread distribution of the clonal plant Leymus chinensis was determined, i.e. phenotypic plasticity or local specialization in water use efficiency (WUE; reflected by foliar δ(13)C). To test whether plasticity is required for the species to thrive in different habitats, samples were collected across its distribution in the Mongolian steppe, and a controlled watering experiment was conducted with two populations at two different sites. Five populations were also transplanted from different sites into a control environment, and the foliar δ(13)C was compared between the control and original habitats, to test for local specialization in WUE. Results demonstrated decreased foliar δ(13)C with increasing precipitation during controlled watering experiments, with divergent responses between the two populations assessed. Change in foliar δ(13)C (-3.69 ‰) due to water addition was comparable to fluctuations of foliar δ(13)C observed in situ (-4.83 ‰). Foliar δ(13)C differed by -0.91 ‰ between two transplanted populations; however, this difference was not apparent between the two populations when growing in their original habitats. Findings provide evidence that local adaptation affects foliar δ(13)C much less than phenotypic plasticity. Thus, plasticity in WUE is more important than local adaptation in allowing the clonal plant L. chinensis to occupy a wide range of habitats in the Mongolian steppe.

11.
Ecol Evol ; 5(18): 3995-4005, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26442646

ABSTRACT

Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with (13)C-(15)N-enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO 3-N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming.

12.
Ecol Evol ; 5(5): 1068-75, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25798224

ABSTRACT

Stable carbon isotope composition (δ (13)C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ (13)C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 to 2011. Additionally, we collected leaves of L. chinensis separately from two types of grassland (grazed and fenced) in 2011. Foliar δ (13)C values of all samples were measured. We compared the patterns that foliar δ (13)C to precipitation among different years or different sample sizes, the differences of foliar δ (13)C between grazed and fenced grassland. Whether actual annual precipitation (AAP) or mean annual precipitation (MAP), it was strongly correlated with foliar δ (13)C every year. Significant difference was found between the slopes of foliar δ (13)C to AAP and MAP every year, among the slopes of foliar δ (13)C to AAP from 2009 to 2011. The more samples used at each site the lower and convergent P-values of the linear regression test between foliar δ (13)C and precipitation. Furthermore, there was significant lower foliar δ (13)C value in presence of grazed type than fenced type grassland. These findings provide evidence that there is significant effect of sampling method to foliar δ (13)C and its response pattern to precipitation of L. chinensis. Our results have valuable implications in methodology for future field sampling studies.

13.
Ecol Evol ; 4(5): 648-55, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25035804

ABSTRACT

A decrease in foliar δ (13)C with increasing precipitation is a common tendency in steppe plants. However, the rate of decrease has been reported to differ between different species or populations. We here hypothesized that plant populations in the same habitat of temperate steppes may not differ in foliar δ (13)C response patterns to precipitation, but could differ in the levels of plasticity of foliar δ (13)C across different habitats. In order to test this hypothesis, we conducted controlled watering experiments in northeast China at five sites along a west-east transect at latitude 44°N, which show substantial interannual fluctuations and intra-annual changes in precipitation among them. In 2001, watering treatment (six levels, three replicates) was assigned to 18 plots at each site. The responses of foliar δ (13)C to precipitation (i.e., the sum of watering and rainfall) were determined in populations of several grass species that were common across all sites. Although similar linear regression slopes were observed for populations of different species growing at the same site, significantly different slopes were obtained for populations of the same species growing at different sites. Further, the slope of the line progressively decreased from Site I to Site V for all species in this study. These results suggest habitat-specific differences in plasticity of foliar δ (13)C in temperate steppe grasses. This indicates that species' δ (13)C response to precipitation is conservative at the same site due to their long-term acclimation, but the mechanism responsible behind this needs further investigations.

14.
Ecol Evol ; 3(2): 262-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23467429

ABSTRACT

Plants depend upon both genetic differences and phenotypic plasticity to cope with environmental variation over different timescales. The spatial variation in foliar δ(13)C levels along a moisture gradient represents an overlay of genetic and plastic responses. We hypothesized that such a spatial variation would be more obvious than the variation arising purely from a plastic response to moisture change. Leymus chinensis and Stipa spp. were sampled from Inner Mongolia along a dry-wet transect, and some of these species were transplanted to an area with a moisture gradient. For Stipa spp., the slope of foliar δ(13)C and mean annual precipitation along the transect was significantly steeper than that of foliar δ(13)C and mean annual precipitation after the watering treatment. For L. chinensis, there was a general decreasing trend in foliar δ(13)C under the different (increasing) watering levels; however, its populations showed an irregular relationship between foliar δ(13)C and moisture origin. Therefore, support for our hypothesis was obtained from Stipa spp., but not from L. chinensis.

15.
Ecology ; 93(11): 2365-76, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23236908

ABSTRACT

Uncertainty about the effects of warming and grazing on soil nitrogen (N) availability, species composition, and aboveground net primary production (ANPP) limits our ability to predict how global carbon sequestration will vary under future warming with grazing in alpine regions. Through a controlled asymmetrical warming (1.2/1.7 degrees C during daytime/nighttime) with a grazing experiment from 2006 to 2010 in an alpine meadow, we found that warming alone and moderate grazing did not significantly affect soil net N mineralization. Although plant species richness significantly decreased by 10% due to warming after 2008, we caution that this may be due to the transient occurrence or disappearance of some rare plant species in all treatments. Warming significantly increased graminoid cover, except in 2009, and legume cover after 2008, but reduced non-legume forb cover in the community. Grazing significantly decreased cover of graminoids and legumes before 2009 but increased forb cover in 2010. Warming significantly increased ANPP regardless of grazing, whereas grazing reduced the response of ANPP to warming. N addition did not affect ANPP in both warming and grazing treatments. Our findings suggest that soil N availability does not determine ANPP under simulated warming and that heavy grazing rather than warming causes degradation of the alpine meadows.


Subject(s)
Nitrogen/chemistry , Plants/classification , Soil/chemistry , Animals , Biomass , Climate Change , Ecosystem , Fertilizers , Nitrogen/metabolism , Plant Development , Plants/genetics , Species Specificity , Time Factors
16.
Ecol Evol ; 2(5): 1065-70, 2012 May.
Article in English | MEDLINE | ID: mdl-22837850

ABSTRACT

Stomatal characteristics are used as proxies of paleo-environment. Only a few model species have been used to study the mechanisms of genetic and environmental effects on stomatal initiation. Variation among species has not been quantified. In this paper, results from an in situ reciprocal transplant experiment along an elevation gradient in the northeast Tibetan Plateau are reported, in which the relative effects of genetics (original altitude) and environment (transplant altitude) on stomatal density (SD) and length (SL) were quantified. In Thalictrum alpinum, only the environment significantly influenced SD, with the variance component ([Formula: see text]) of the environment found to be much greater than that of genetics ([Formula: see text]) ([Formula: see text]). In Kobresia humillis, only genetics significantly influenced SD and SL, with the genetics variance component found to be greater than that of the environment ([Formula: see text], for SD). These results suggest that the extent to which genetics and the environment determine stomatal initiation and development is species-specific. This needs to be considered when studying genetic or environmental controls of stomatal initiation, as well as when SD and SL are used as proxies for ancient climate factors (e.g., CO(2) concentration).

17.
Nature ; 435(7045): E5-6; discussion E6-7, 2005 Jun 23.
Article in English | MEDLINE | ID: mdl-15973359

ABSTRACT

Bai et al. suggest that in China's Inner Mongolia steppe, community-level stability arises from compensatory effects among the principal components at both the species and plant functional group (PFG) levels. By analysing a consistent 19-year data set (1980-98), we show here that their analysis of a 24-year field data set (1980-2003) is called into question by inconsistencies in sampling location and numbers after 1998; the authors' findings are further undermined because they do not distinguish temporal variation from spatial heterogeneity in analysing compensatory effects among species or PFGs. We believe that rigorous reanalysis is needed for a better understanding of grassland stability.


Subject(s)
Ecosystem , Plant Development , Plants/classification , Biodiversity , Biomass , China , Poaceae/physiology , Population Dynamics , Rain , Reproducibility of Results , Seasons , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...